
Spatial statistics in ecology, Part 4

Philippe Marchand, Université du Québec en Abitibi-Témiscamingue

January 21, 2021

In the previous parts, we saw how to account for spatial dependence in linear regression models with either
geostatistical models (also called Gaussian processes) or spatial autocorrelation models (CAR/SAR). In this
last part, we will see how to combine these features with more complex regression models, in particular
generalized linear mixed models (GLMM).

GLMM with spatial Gaussian process

Data

The gambia dataset found in the geoR package presents the results of a study of malaria prevalence among
children of 65 villages in The Gambia. We will use a slightly transformed version of the data found in the file
gambia.csv.
library(geoR)

gambia <- read.csv("data/gambia.csv")
head(gambia)

id_village x y pos age netuse treated green phc
1 1 349.6313 1458.055 1 1783 0 0 40.85 1
2 1 349.6313 1458.055 0 404 1 0 40.85 1
3 1 349.6313 1458.055 0 452 1 0 40.85 1
4 1 349.6313 1458.055 1 566 1 0 40.85 1
5 1 349.6313 1458.055 0 598 1 0 40.85 1
6 1 349.6313 1458.055 1 590 1 0 40.85 1

Here are the fields in that dataset:

• id_village: Identifier of the village.
• x and y: Spatial coordinates of the village (in kilometers, based on UTM coordinates).
• pos: Binary response, whether the child tested positive for malaria.
• age: Age of the child in days.
• netuse: Whether or not the child sleeps under a bed net.
• treated: Whether or not the bed net is treated.
• green: Remote sensing based measure of greenness of vegetation (measured at the village level).
• phc: Presence or absence of a public health centre for the village.

We can count the number of positive cases and total children tested by village to map the fraction of positive
cases (or prevalence, prev).
Create village-level dataset
gambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%

summarize(pos = sum(pos), total = n()) %>%

1

data/gambia.csv

mutate(prev = pos / total) %>%
ungroup()

`summarise()` regrouping output by 'id_village', 'x', 'y', 'green' (override with `.groups` argument)
head(gambia_agg)

A tibble: 6 x 8
id_village x y green phc pos total prev
<int> <dbl> <dbl> <dbl> <int> <int> <int> <dbl>
1 1 350. 1458. 40.8 1 17 33 0.515
2 2 359. 1460. 40.8 1 19 63 0.302
3 3 360. 1460. 40.1 0 7 17 0.412
4 4 364. 1497. 40.8 0 8 24 0.333
5 5 366. 1460. 40.8 0 10 26 0.385
6 6 367. 1463. 40.8 0 7 18 0.389
ggplot(gambia_agg, aes(x = x, y = y)) +

geom_point(aes(color = prev)) +
geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +
coord_fixed() +
theme_minimal() +
scale_color_viridis_c()

1460

1480

1500

1520

300 400 500 600
x

y

0.00

0.25

0.50

0.75

prev

We use the gambia.borders dataset from the geoR package to trace the country boundaries with geom_path.
Since those boundaries are in meters, we divide by 1000 to get the same scale as our points. We also use
coord_fixed to ensure a 1:1 aspect ratio between the axes and use the viridis color scale, which makes it

2

easier to visualize a continuous variable compared with the default gradient scale in ggplot2.

Based on this map, there seems to be spatial correlation in malaria prevalence, with the eastern cluster
of villages showing more high prevalence values (yellow-green) and the middle cluster showing more low
prevalence values (purple).

Non-spatial GLMM

For this first example, we will ignore the spatial aspect of the data and model the presence of malaria (pos)
as a function of the use of a bed net (netuse) and the presence of a public health centre (phc). Since we have
a binary response, we need to use a logistic regression model (a GLM). Since we have predictors at both the
individual and village level, and we expect that children of the same village have more similar probabilities of
having malaria even after accounting for those predictors, we need to add a random effect of the village. The
result is a GLMM that we fit using the glmer function in the lme4 package.
library(lme4)

mod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village),
data = gambia, family = binomial)

summary(mod_glmm)

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial (logit)
Formula: pos ~ netuse + phc + (1 | id_village)
Data: gambia
##
AIC BIC logLik deviance df.resid
2428.0 2450.5 -1210.0 2420.0 2031
##
Scaled residuals:
Min 1Q Median 3Q Max
-2.1286 -0.7120 -0.4142 0.8474 3.3434
##
Random effects:
Groups Name Variance Std.Dev.
id_village (Intercept) 0.8149 0.9027
Number of obs: 2035, groups: id_village, 65
##
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1491 0.2297 0.649 0.5164
netuse -0.6044 0.1442 -4.190 2.79e-05 ***
phc -0.4985 0.2604 -1.914 0.0556 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Correlation of Fixed Effects:
(Intr) netuse
netuse -0.422
phc -0.715 -0.025

According to these results, both netuse and phc result in a decrease of malaria prevalence, although the
effect of phc is not significant at a threshold α = 0.05. The intercept (0.149) is the logit of the probability of
malaria presence for a child with no bednet and no public health centre, but it is the mean intercept across

3

all villages, and there is a lot of variation between villages, based on the random effect standard deviation of
0.90. We can get the estimated intercept for each village with the function coef:
head(coef(mod_glmm)$id_village)

(Intercept) netuse phc
1 0.93727515 -0.6043602 -0.4984835
2 0.09204843 -0.6043602 -0.4984835
3 0.22500620 -0.6043602 -0.4984835
4 -0.46271089 -0.6043602 -0.4984835
5 0.13680037 -0.6043602 -0.4984835
6 -0.03723346 -0.6043602 -0.4984835

So for example, the intercept for village 1 is around 0.94, equivalent to a probability of 72%:
plogis(0.937)

[1] 0.7184933

while the intercept in village 2 is equivalent to a probability of 52%:
plogis(0.092)

[1] 0.5229838

The DHARMa package provides a general method for checking whether the residuals of a GLMM are
distributed according to the specified model and whether there is any residual trend. The package works by
simulating replicates of each observation according to the fitted model and then determining a “standardized
residual”, which is the relative position of the observed value with respect to the simulated values, e.g. 0 if the
observation is smaller than all the simulations, 0.5 if it is in the middle, etc. If the model represents the data
well, each value of the standardized residual between 0 and 1 should be equally likely, so the standardized
residuals should produce a uniform distribution between 0 and 1.

The simulateResiduals function performs the calculation of the standardized residuals, then the plot
function plots the diagnostic graphs with the results of certain tests.
library(DHARMa)
res_glmm <- simulateResiduals(mod_glmm)
plot(res_glmm)

4

https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.17527
Deviation n.s.

Outlier test: p= 0.0119
Deviation significant

Dispersion test: p= 0.44
Deviation n.s.

Model predictions (rank transformed)

S
ta

nd
ar

di
ze

d
re

si
du

al

1 2 3 4
0.

00
0.

25
0.

50
0.

75
1.

00

DHARMa residual diagnostics

The graph on the left is a quantile-quantile plot of standardized residuals. The results of three statistical
tests also also shown: a Kolmogorov-Smirnov (KS) test which checks whether there is a deviation from the
theoretical distribution, a dispersion test that checks whether there is underdispersion or overdispersion, and
an outlier test based on the number of residuals that are more extreme than all the simulations. Here, we get
a significant result for the outliers, though the message indicates that this result might have an inflated type
I error rate in this case.

On the right, we generally get a graph of standardized residuals (in y) as a function of the rank of the
predicted values, in order to check for any leftover trend in the residual. Here, the predictions are binned by
quartile, so it might be better to instead aggregate the predictions and residuals by village, which we can do
with the recalculateResiduals function.
plot(recalculateResiduals(res_glmm, group = gambia$id_village))

DHARMa:plot used testOutliers with type = binomial for computational reasons (nObs > 500). Note that this method may not have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details

5

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.84628
Deviation n.s.

Outlier test: p= 0
Deviation significant

Dispersion test: p= 0.784
Deviation n.s.

Model predictions (rank transformed)

S
ta

nd
ar

di
ze

d
re

si
du

al

0.0 0.4 0.8
0.

00
0.

25
0.

50
0.

75
1.

00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test significant

DHARMa residual diagnostics

The plot to the right now shows individual points, along with a quantile regression for the 1st quartile, the
median and the 3rd quartile. In theory, these three curves should be horizontal straight lines (no leftover
trend in the residuals vs. predictions). The curve for the 3rd quartile (in red) is significantly different from a
horizontal line, which could indicate some systematic effect that is missing from the model.

Spatial GLMM with spaMM

The spaMM (spatial mixed models) package is a relatively new R package that can perform approximate
maximum likelihood estimation of parameters for GLMM with spatial dependence, modelled either as a
Gaussian process or with a CAR (we will see the latter in the last section). The package implements different
algorithms, but there is a single fitme function that chooses the appropriate algorithm for each model type.
For example, here is the same (non-spatial) model as above fit with spaMM.
library(spaMM)

mod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),
data = gambia, family = binomial)

summary(mod_spamm_glmm)

formula: pos ~ netuse + phc + (1 | id_village)
Estimation of lambda by Laplace ML approximation (p_v).
Estimation of fixed effects by Laplace ML approximation (p_v).
family: binomial(link = logit)
------------ Fixed effects (beta) ------------
Estimate Cond. SE t-value
(Intercept) 0.1491 0.2287 0.6519

6

netuse -0.6045 0.1420 -4.2567
phc -0.4986 0.2593 -1.9231
--------------- Random effects ---------------
Family: gaussian(link = identity)
--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;
id_village : 0.8151
--- Coefficients for log(lambda):
Group Term Estimate Cond.SE
id_village (Intercept) -0.2045 0.2008
of obs: 2035; # of groups: id_village, 65
------------- Likelihood values -------------
logLik
p_v(h) (marginal L): -1210.016

Note that the estimates of the fixed effects as well as the variance of random effects are nearly identical to
those obtained by glmer above.

We can now use spaMM to fit the same model with the addition of spatial correlations between villages. In
the formula of the model, this is represented as a random effect Matern(1 | x + y), which means that the
intercepts are spatially correlated between villages following a Matérn correlation function of coordinates
(x, y). The Matérn function is a flexible function for spatial correlation that includes a shape parameter ν
(nu), so that when ν = 0.5 it is equivalent to the exponential correlation but as ν grows to large values, it
approaches a Gaussian correlation. We could let the function estimate ν, but here we will fix it to 0.5 with
the fixed argument of fitme.
mod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),

data = gambia, family = binomial, fixed = list(nu = 0.5))

Increase spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').
summary(mod_spamm)

formula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)
Estimation of corrPars and lambda by Laplace ML approximation (p_v).
Estimation of fixed effects by Laplace ML approximation (p_v).
Estimation of lambda by 'outer' ML, maximizing p_v.
family: binomial(link = logit)
------------ Fixed effects (beta) ------------
Estimate Cond. SE t-value
(Intercept) 0.06861 0.3352 0.2047
netuse -0.51719 0.1407 -3.6757
phc -0.44416 0.2052 -2.1648
--------------- Random effects ---------------
Family: gaussian(link = identity)
--- Correlation parameters:
1.nu 1.rho
0.50000000 0.05128691
--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;
x + y : 0.6421
id_village : 0.1978
of obs: 2035; # of groups: x + y, 65; id_village, 65
------------- Likelihood values -------------
logLik
p_v(h) (marginal L): -1197.968

7

Let’s first check the random effects of the model. The spatial correlation function has a parameter rho equal
to 0.0513. This parameter in spaMM is the inverse of the range, so here the range of exponential correlation
is 1/0.0513 or around 19.5 km. There are now two variance prameters, the one identified as x + y is the
long-range variance (i.e. sill) for the exponential correlation model whereas the one identified as id_village
shows the non-spatially correlated portion of the variation between villages.

In fact, while we left the random effects (1 | id_village) in the formula to represent the non-spatial
portion of variation between villages, we could also represent this with a nugget effect in the geostatistical
model. In both cases, it would represent the idea that even two villages very close to each other would have
different baseline prevalences in the model.

By default, the Matern function has no nugget effect, but we can add one by specifying a non-zero Nugget in
the initial parameter list init.
mod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),

data = gambia, family = binomial, fixed = list(nu = 0.5),
init = list(Nugget = 0.1))

Increase spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').
summary(mod_spamm2)

formula: pos ~ netuse + phc + Matern(1 | x + y)
Estimation of corrPars and lambda by Laplace ML approximation (p_v).
Estimation of fixed effects by Laplace ML approximation (p_v).
Estimation of lambda by 'outer' ML, maximizing p_v.
family: binomial(link = logit)
------------ Fixed effects (beta) ------------
Estimate Cond. SE t-value
(Intercept) 0.06861 0.3352 0.2047
netuse -0.51719 0.1407 -3.6757
phc -0.44416 0.2052 -2.1648
--------------- Random effects ---------------
Family: gaussian(link = identity)
--- Correlation parameters:
1.nu 1.Nugget 1.rho
0.50000000 0.23551026 0.05128692
--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;
x + y : 0.8399
of obs: 2035; # of groups: x + y, 65
------------- Likelihood values -------------
logLik
p_v(h) (marginal L): -1197.968

As you can see, all estimates are the same, except that the variance of the spatial portion (sill) is now 0.84
and the nugget is equal to a fraction 0.235 of that sill, so a variance of 0.197, which is the same as the
id_village random effect in the version above. Thus the two formulations are equivalent.

Now, recall the coefficients we obtained for the non-spatial GLMM:
summary(mod_glmm)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01
netuse -0.6043602 0.1442448 -4.1898242 2.791706e-05
phc -0.4984835 0.2604083 -1.9142381 5.558973e-02

In the spatial version, both fixed effects have moved slightly towards zero, but the standard error of the effect

8

of phc has decreased. It is interesting that the inclusion of spatial dependence has allowed us to estimate
more precisely the effect of having a public health centre in the village. This would not always be the case:
for a predictor that is also strongly correlated in space, spatial correlation in the response makes it harder to
estimate the effect of this predictor, since it is confounded with the spatial effect. However, for a predictor
that is not correlated in space, including the spatial effect reduces the residual (non-spatial) variance and
may thus increase the precision of the predictor’s effect.

The spaMM package is also compatible with DHARMa for residual diagnostics. (You can in fact ignore the
warning that it is not in the class of supported models, this is due to using the fitme function rather than a
specific algorithm function in spaMM.)
res_spamm <- simulateResiduals(mod_spamm2)

Warning in checkModel(fittedModel): DHARMa: fittedModel not in class of
supported models. Absolutely no guarantee that this will work!
plot(res_spamm)

DHARMa:plot used testOutliers with type = binomial for computational reasons (nObs > 500). Note that this method may not have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.09038
Deviation n.s.

Outlier test: p= 0.00587
Deviation significant

Dispersion test: p= 0.712
Deviation n.s.

Model predictions (rank transformed)

S
ta

nd
ar

di
ze

d
re

si
du

al

1 2 3 4

0.
00

0.
25

0.
50

0.
75

1.
00

DHARMa residual diagnostics

plot(recalculateResiduals(res_spamm, group = gambia$id_village))

DHARMa:plot used testOutliers with type = binomial for computational reasons (nObs > 500). Note that this method may not have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details

9

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.85115
Deviation n.s.

Outlier test: p= 0
Deviation significant

Dispersion test: p= 1
Deviation n.s.

Model predictions (rank transformed)

S
ta

nd
ar

di
ze

d
re

si
du

al

0.0 0.4 0.8
0.

00
0.

25
0.

50
0.

75
1.

00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test significant

DHARMa residual diagnostics

Finally, while we will show how to make and visualize spatial predictions below, we can produce a quick map
of the estimated spatial effects in a spaMM model with the filled.mapMM function.
filled.mapMM(mod_spamm2)

10

0.1
0.3
0.5
0.7

350 400 450 500 550 600

1460

1480

1500

Gaussian process models vs. smoothing splines

If you are familiar with generalized additive models (GAM), you might think that the spatial variation in
malaria prevalence (as shown in the map above) could be represented by a 2D smoothing spline (as a function
of x and y) within a GAM.

The code below fits the GAM equivalent of our Gaussian process GLMM above with the gam function in the
mgcv package. The spatial effect is represented by the 2D spline s(x, y) whereas the non-spatial random
effect of village is represented by s(id_village, bs = "re"), which is the same as (1 | id_village) in
the previous models. Note that for the gam function, categorical variables must be explicitly converted to
factors.
library(mgcv)
gambia$id_village <- as.factor(gambia$id_village)
mod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = "re") + s(x, y),

data = gambia, family = binomial)

To visualize the 2D spline, we will use the gratia package.
library(gratia)
draw(mod_gam)

11

https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/

−0.8

−0.4

0.0

0.4

0.8

−2 −1 0 1 2
Gaussian quantiles

E
ffe

ct
s

s(id_village)

1460
1470
1480
1490
1500
1510

400 500 600
x

y

−1

0

1

2

Effects(x,y)

−0.6

−0.4

−0.2

0.0

0.00 0.25 0.50 0.75 1.00
netuseP

ar
tia

l e
ffe

ct
 o

f n
et

us
e

−0.75

−0.50

−0.25

0.00

0.00 0.25 0.50 0.75 1.00
phc

P
ar

tia
l e

ffe
ct

 o
f p

hc

Note that the plot of the spline s(x, y) (top right) does not extend too far from the locations of the data
(other areas are blank). In this graph, we can also see that the village random effects follow the expected
Gaussian distribution (top left).

Next, we will use both the spatial GLMM from the previous section and this GAMM to predict the mean
prevalence on a spatial grid of points contained in the file gambia_pred.csv. The graph below adds those
prediction points (in black) on the previous map of the data points.
gambia_pred <- read.csv("data/gambia_pred.csv")

ggplot(gambia_agg, aes(x = x, y = y)) +
geom_point(data = gambia_pred) +
geom_point(aes(color = prev)) +
geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +
coord_fixed() +
theme_minimal() +
scale_color_viridis_c()

12

data/gambia_pred.csv

1460

1480

1500

1520

300 400 500 600
x

y

0.00

0.25

0.50

0.75

prev

To make predictions from the GAMM model at those points, the code below goes through the following steps:

• All predictors in the model must be in the prediction data frame, so we add constant values of netuse
and phc (both equal to 1) for all points. Thus, we will make predictions of malaria prevalence in the
case where a net is used and a public health centre is present. We also add a constant id_village,
although it will not be used in predictions (see below).

• We call the predict function on the output of gam to produce predictions at the new data points
(argument newdata), including standard errors (se.fit = TRUE) and excluding the village random
effects, so the prediction is made for an “average village”. The resulting object gam_pred will have
columns fit (mean prediction) and se.fit (standard error). Those predictions and standard errors
are on the link (logit) scale.

• We add the original prediction data frame to gam_pred with cbind.

• We add columns for the mean prediction and 50% confidence interval boundaries (mean ± 0.674
standard error), converted from the logit scale to the probability scale with plogis. We choose a 50%
interval since a 95% interval may be too wide here to contrast the different predictions on the map at
the end of this section.

gambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)

gam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE,
exclude = "s(id_village)")

gam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))
gam_pred <- mutate(gam_pred, pred = plogis(fit),

lo = plogis(fit - 0.674 * se.fit), # 50% CI
hi = plogis(fit + 0.674 * se.fit))

13

Note: The reason we do not make predictions directly on the probability (response) scale is that the normal
formula for confidence intervals applies more accurately on the logit scale. Adding a certain number of
standard errors around the mean on the probability scale would lead to less accurate intervals and maybe
even confidence intervals outside the possible range (0, 1) for a probability.

We apply the same strategy to make predictions from the spaMM spatial GLMM model. There are a few
differences in the predict method compared with the GAMM case.

• The argument binding = "fit" means that mean predictions (fit column) will be attached to the
prediction dataset and returned as spamm_pred.

• The variances = list(linPred = TRUE) tells predict to calculate the variance of the linear predictor
(so the square of the standard error). However, it appears as an attribute predVar in the output data
frame rather than a se.fit column, so we move it to a column on the next line.

spamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = "link",
binding = "fit", variances = list(linPred = TRUE))

spamm_pred$se.fit <- sqrt(attr(spamm_pred, "predVar"))
spamm_pred <- mutate(spamm_pred, pred = plogis(fit),

lo = plogis(fit - 0.674 * se.fit),
hi = plogis(fit + 0.674 * se.fit))

Finally, we combine both sets of predictions as different rows of a pred_all dataset with bind_rows. The
name of the dataset each prediction originates from (gam or spamm) will appear in the “model” column
(argument .id). To simplify production of the next plot, we then use pivot_longer in the tidyr package to
change the three columns “pred”, “lo” and “hi” to two columns, “stat” and “value” (pred_tall has thus
three rows for every row in pred_all).
pred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = "model")

library(tidyr)
pred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = "stat",

values_to = "value")

Having done these steps, we can finally look at the prediction maps (mean, lower and upper bounds of the
50% confidence interval) with ggplot. The original data points are shown in red.
ggplot(pred_tall, aes(x = x, y = y)) +

geom_point(aes(color = value)) +
geom_point(data = gambia_agg, color = "red", size = 0) +
coord_fixed() +
facet_grid(stat~model) +
scale_color_viridis_c() +
theme_minimal()

14

gam spamm
hi

lo
pred

300 400 500 600 300 400 500 600

1460
1480
1500
1520

1460
1480
1500
1520

1460
1480
1500
1520

x

y

0.25

0.50

0.75

value

While both models agree that there is a higher prevalence near the eastern cluster of villages, the GAMM
also estimates a higher prevalence at a few points (western edge and around the center) where there is no
data. This is an artifact of the shape of the spline fit around the data points, since a spline is meant to
fit a global, although nonlinear, trend. In contrast, the geostatistical model represents the spatial effect as
local correlations and reverts to the overall mean prevalence when far from any data points, which is a safer
assumption. This is one reason to choose a geostatistical / Gaussian process model in this case.

Bayesian methods for GLMMs with Gaussian processes

Bayesian models provide a flexible framework to express models with complex dependence structure among
the data, including spatial dependence. However, fitting a Gaussian process model with a fully Bayesian
approach can be slow, due the need to compute a spatial covariance matrix between all point pairs at each
iteration.

The INLA (integrated nested Laplace approximation) method performs an approximate calculation of the
Bayesian posterior distribution, which makes it suitable for spatial regression problems. We do not cover
it in this course, but I recommend the textbook by Paula Moraga (in the references section below) that
provides worked examples of using INLA for various geostatistical and areal data models, in the context of
epidemiology, including models with both space and time dependence. The book presents the same Gambia
malaria data as an example of a geostatistical dataset, which inspired its use in this course.

15

GLMM with spatial autoregression

We return to the last example of the previous part, where we modelled the rate of COVID-19 cases (cases /
1000) for administrative health network divisions (RLS) in Quebec as a function of their population density.
The rate is given by the “taux_1k” column in the rls_covid shapefile.
library(sf)
rls_covid <- read_sf("data/rls_covid.shp")
rls_covid <- rls_covid[!is.na(rls_covid$dens_pop),]
plot(rls_covid["taux_1k"])

10
20

30
40

50

taux_1k

Previously, we modelled the logarithm of this rate as a linear function of the logarithm of population density,
with the residual variance correlated among neighbouring units via a CAR (conditional autoregression)
structure, as shown in the code below.
library(spdep)
library(spatialreg)

rls_nb <- poly2nb(rls_covid)
rls_w <- nb2listw(rls_nb, style = "B")

car_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,
listw = rls_w, family = "CAR")

summary(car_lm)

##
Call: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid,

16

listw = rls_w, family = "CAR")
##
Residuals:
Min 1Q Median 3Q Max
-1.201858 -0.254084 -0.053348 0.281482 1.427053
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16
log(dens_pop) 0.206623 0.032848 6.2903 3.169e-10
##
Lambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07
Numerical Hessian standard error of lambda: 0.0050486
##
Log likelihood: -80.68953
ML residual variance (sigma squared): 0.2814, (sigma: 0.53048)
Number of observations: 95
Number of parameters estimated: 4
AIC: 169.38

As a reminder, the poly2nb function in the spdep package creates a list of neighbours based on bordering
polygons in a shapefile, then the nb2listw converts it to a list of weights, here binary weights (style = "B")
so that each bordering region receives the same weight of 1 in the autoregressive model.

Instead of using the rates, it would be possible to model the cases directly (column “cas” in the dataset) with
a Poisson regression, which is appropriate for count data. To account for the fact that if the risk per person
were equal, cases would be proportional to population, we can add the unit’s population pop as an offset in
the Poisson regression. Therefore, the model would look like: cas ~ log(dens_pop) + offset(log(pop)).
Note that since the Poisson regression uses a logarithmic link, that model with log(pop) as an offset assumes
that log(cas / pop) (so the log rate) is proportional to log(dens_pop), just like the linear model above,
but it has the advantage of modelling the stochasticity of the raw data (the number of cases) directly with a
Poisson distribution.

We do not have the population in this data, but we can estimate it from the cases and the rate (cases / 1000)
as follows:
rls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000

To define a CAR model in spaMM, we need a weights matrix rather than a list of weights as in the spatialreg
package. Fortunately, the spdep package also includes a function nb2mat to convert the neighbours list to
a matrix of weights, here again using binary weights. To avoid a warning, we specify the row and column
names of that matrix to be equal to the IDs associated with each unit (RLS_code). Then, we add a term
adjacency(1 | RLS_code) to the model to specify that the residual variation between different groups
defined by RLS_code is spatially correlated with a CAR structure (here, each group has only one observation
since we have one data point by RLS unit).
library(spaMM)

rls_mat <- nb2mat(rls_nb, style = "B")
rownames(rls_mat) <- rls_covid$RLS_code
colnames(rls_mat) <- rls_covid$RLS_code

rls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),
data = rls_covid, adjMatrix = rls_mat, family = poisson)

Iterative algorithm converges slowly. See help('convergence') for suggestions.

17

summary(rls_spamm)

formula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)
Estimation of corrPars and lambda by Laplace ML approximation (p_v).
Estimation of fixed effects by Laplace ML approximation (p_v).
Estimation of lambda by 'outer' ML, maximizing p_v.
family: poisson(link = log)
------------ Fixed effects (beta) ------------
Estimate Cond. SE t-value
(Intercept) -5.1618 0.16855 -30.625
log(dens_pop) 0.1999 0.03267 6.119
--------------- Random effects ---------------
Family: gaussian(link = identity)
--- Correlation parameters:
1.rho
0.1576605
--- Variance parameters ('lambda'):
lambda = var(u) for u ~ Gaussian;
RLS_code : 0.266
of obs: 95; # of groups: RLS_code, 95
------------- Likelihood values -------------
logLik
p_v(h) (marginal L): -709.3234

Note that the spatial correlation coefficient rho (0.158) is similar to the equivalent quantity in the spautolm
model above, where it was called Lambda. The effect of log(dens_pop) is also approximately 0.2 in both
models.

Reference

Moraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman
& Hall/CRC Biostatistics Series. Available online at https://www.paulamoraga.com/book-geospatial/.

18

https://www.paulamoraga.com/book-geospatial/

	GLMM with spatial Gaussian process
	Data
	Non-spatial GLMM
	Spatial GLMM with spaMM
	Gaussian process models vs. smoothing splines
	Bayesian methods for GLMMs with Gaussian processes

	GLMM with spatial autoregression
	Reference

