
Linear mixed models, part 1

November 15, 2021

Objectives

• Apply a linear mixed model to grouped data.

• Explain how a mixed model is a compromise between a model ignoring the group effect and a model
with fixed group effects.

• Determine the situations where it is most beneficial to use a mixed model.

Motivation

Example: Growth of white spruce on several sites

Suppose you need to model the growth of white spruce at multiple sites within a region. You measured the
following numeric variables on a total sample of 100 trees, spread across multiple sites:

• annual growth (response variable);
• diameter (DBH);
• age;
• competition index (CI, based on the number and size of neighboring trees).

(a) What would be the equation of a linear model (e.g. y ~ x) representing the relationship between annual
growth and the three predictors?

(b) If the mean growth varies by site, how can you include this effect in your model?

(c) If the effects of diameter, age and competition index on growth vary by site, how do you account for
this in your model?

(d) Do the methods proposed in (b) and (c) work best with few sites (e.g. 100 trees across 3 sites) or many
sites (e.g. 100 trees across 20 sites)? Do they work better if the number of trees sampled by site is
similar (e.g. 5 trees at each of the 20 sites) or variable (e.g. 2 to 30 trees depending on the site)?

(e) Can you use this model to predict the growth of white spruce at a new site?

Suppose now that you know some characteristics of each site that could explain the differences in growth
between sites, for example:

• the drainage class (categorical variable);
• the slope of the site (numerical variable).

(a) How can you include these variables in your model?

(b) Does the model proposed in (a) work better with few sites or many sites?

(c) Can you use that model to predict the growth of white spruce at a new site?

Finally, suppose you measured growth and other individual predictors on the same 100 white spruce trees for
three consecutive years.
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(a) How could you add year-to-year growth variation in your model?

(b) If there is a weather station in the region, would it be useful to add the effect of weather variables
(e.g. mean temperature) to explain this interannual variation?

(c) From a statistical point of view, does measuring the same trees each year influence the accuracy of the
regression estimates?

Example: Benthic fauna in the Netherlands

The rikz.csv dataset, taken from the textbook by Zuur et al. (see references at the bottom of this page),
presents data on the benthic communities of 9 beaches in the Netherlands. Species richness was measured for
5 sites on each of the 9 beaches for a total of 45 observations. The NAP variable measures the vertical position
of each site relative to mean sea level, while the exposure index (Exposure) is measured at the beach scale.
rikz <- read.csv("../donnees/rikz.csv")
# Correct the representation of categorical variables
rikz <- mutate(rikz, Beach = as.factor(Beach),

Exposure = as.factor(Exposure))
head(rikz)

## Sample Richness Exposure NAP Beach
## 1 1 11 10 0.045 1
## 2 2 10 10 -1.036 1
## 3 3 13 10 -1.336 1
## 4 4 11 10 0.616 1
## 5 5 10 10 -0.684 1
## 6 6 8 8 1.190 2

Since the response is a number of species, a Poisson regression might be more appropriate. However, we will
not cover generalized linear mixed models in this class. Therefore, we apply a square root transformation to
the response to use linear regression. This transformation generally improves the homogeneity of variance for
count data.
rikz <- mutate(rikz, srich = sqrt(Richness))

From these data, we will illustrate different strategies to account for the grouped nature of the data (9
beaches) and the group-level predictor (exposure index).

Model 1: Ignore groups

The first model includes only the site-level predictor (NAP), with an adjusted R2 = 0.46. The effect of this
predictor is significant and indicates that the higher sites have a lower species richness.
mod1 <- lm(srich ~ NAP, rikz)
summary(mod1)

##
## Call:
## lm(formula = srich ~ NAP, data = rikz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1898 -0.5874 -0.1233 0.2603 2.0089
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3952 0.1241 19.295 < 2e-16 ***
## NAP -0.7409 0.1190 -6.224 1.72e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7851 on 43 degrees of freedom
## Multiple R-squared: 0.474, Adjusted R-squared: 0.4617
## F-statistic: 38.74 on 1 and 43 DF, p-value: 1.724e-07

Here is the line representing model predictions as a function of NAP.
rikz$fit1 <- fitted(mod1)

ggplot(rikz, aes(x = NAP, y = srich)) +
geom_point() +
geom_line(aes(y = fit1))
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Linear regression assumes that residuals are independent from one observation to another. This is not the
case here, since the 5 sites of the same beach are more similar compared to the sites of different beaches.
ggplot(rikz, aes(x = Beach, y = residuals(mod1))) +

geom_point()
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Model 2: Estimation of coefficients for each group

By adding the Beach factor, this model can estimate systematic differences in species richness between
beaches.
mod2 <- lm(srich ~ NAP + Beach, rikz)
summary(mod2)

##
## Call:
## lm(formula = srich ~ NAP + Beach, data = rikz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.58544 -0.28653 -0.06544 0.23657 1.69043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.99457 0.26711 11.211 3.92e-13 ***
## NAP -0.66410 0.09655 -6.878 5.49e-08 ***
## Beach2 0.61544 0.37909 1.623 0.11346
## Beach3 -1.21158 0.37491 -3.232 0.00268 **
## Beach4 -1.13596 0.38510 -2.950 0.00564 **
## Beach5 -0.32863 0.38648 -0.850 0.40093
## Beach6 -0.90219 0.37835 -2.385 0.02265 *
## Beach7 -0.98741 0.39419 -2.505 0.01705 *
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## Beach8 -0.89080 0.38392 -2.320 0.02628 *
## Beach9 -0.79350 0.38561 -2.058 0.04712 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5882 on 35 degrees of freedom
## Multiple R-squared: 0.7596, Adjusted R-squared: 0.6978
## F-statistic: 12.29 on 9 and 35 DF, p-value: 1.744e-08

This model amounts to estimating a different intercept for each group: the Intercept is the mean of srich
for Beach 1 when NAP = 0 (at mean sea level), the value of Beach2 is the difference in means between beaches
2 and 1, etc.

The adjusted R2 increased to 0.70 for this model. Here are its prediction lines superimposed to the data.
rikz$fit2 <- fitted(mod2)

ggplot(rikz, aes(x = NAP, y = srich, color = Beach)) +
geom_point() +
geom_line(aes(y = fit2))
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A more flexible model would allow the effect of the NAP (the slope of the line) to vary from one beach to
another, by adding the interaction between NAP and Beach.
mod2_inter <- lm(srich ~ NAP * Beach, rikz)
summary(mod2_inter)

##
## Call:
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## lm(formula = srich ~ NAP * Beach, data = rikz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.84831 -0.16080 -0.03091 0.14909 0.98737
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.28835 0.24259 13.555 1.45e-13 ***
## NAP -0.05077 0.28172 -0.180 0.858319
## Beach2 0.30239 0.32158 0.940 0.355394
## Beach3 -1.50542 0.31542 -4.773 5.61e-05 ***
## Beach4 -1.56073 0.33715 -4.629 8.25e-05 ***
## Beach5 0.11078 0.35432 0.313 0.756947
## Beach6 -1.25466 0.31812 -3.944 0.000513 ***
## Beach7 -1.39537 0.41116 -3.394 0.002144 **
## Beach8 -1.17907 0.32697 -3.606 0.001242 **
## Beach9 -0.85912 0.33879 -2.536 0.017314 *
## NAP:Beach2 -0.54313 0.36261 -1.498 0.145780
## NAP:Beach3 -0.47943 0.37104 -1.292 0.207267
## NAP:Beach4 -0.37552 0.35511 -1.057 0.299666
## NAP:Beach5 -1.82561 0.38805 -4.705 6.74e-05 ***
## NAP:Beach6 -0.36229 0.33258 -1.089 0.285636
## NAP:Beach7 -0.48212 0.41379 -1.165 0.254155
## NAP:Beach8 -0.62429 0.32975 -1.893 0.069089 .
## NAP:Beach9 -1.01278 0.35527 -2.851 0.008256 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4508 on 27 degrees of freedom
## Multiple R-squared: 0.8911, Adjusted R-squared: 0.8225
## F-statistic: 13 on 17 and 27 DF, p-value: 7.079e-09

The adjusted R2 increased to 0.82, but this model has 17 adjustable parameters for only 45 observations.
According to the AICc, the model without interaction is the best compromise between complexity and good
fit.
library(AICcmodavg)
aictab(list(mod1 = mod1, mod2 = mod2, mod2_inter = mod2_inter))

##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt LL
## mod2 11 98.64 0.00 0.8 0.8 -34.32
## mod2_inter 19 101.41 2.77 0.2 1.0 -16.50
## mod1 3 110.47 11.82 0.0 1.0 -51.94

Here are the prediction lines of the model with interaction. This model is almost equivalent to performing a
separate linear regression for each group, except that the residual variance must be the same for all groups.
Each line is estimated from only 5 observations, so it is likely that the model exaggerates the differences
between beaches (overfitting).
rikz$fit2i <- fitted(mod2_inter)

ggplot(rikz, aes(x = NAP, y = srich, color = Beach)) +
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geom_point() +
geom_line(aes(y = fit2i))
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Model 3: Group-level predictor

Rather than estimating mean species richness and/or the relationship between richness and NAP separately
for each beach (as in the previous model), we could instead try to explain these differences based on predictors
measured at the beach level.

The following model assumes that the (transformed) richness is a function of the interaction between NAP
(defined by site) and the exposure index defined by beach.
mod3 <- lm(srich ~ NAP * Exposure, rikz)
summary(mod3)

##
## Call:
## lm(formula = srich ~ NAP * Exposure, data = rikz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.01561 -0.26022 -0.07632 0.18031 1.62592
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5907 0.2641 13.597 < 2e-16 ***
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## NAP -0.5939 0.2856 -2.079 0.04420 *
## Exposure10 -1.0101 0.2950 -3.424 0.00146 **
## Exposure11 -1.7375 0.2976 -5.839 8.68e-07 ***
## NAP:Exposure10 -0.3680 0.3113 -1.182 0.24429
## NAP:Exposure11 0.1281 0.3140 0.408 0.68549
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5639 on 39 degrees of freedom
## Multiple R-squared: 0.7538, Adjusted R-squared: 0.7223
## F-statistic: 23.88 on 5 and 39 DF, p-value: 6.417e-11

Note that it is not enough to check the coefficients to see if the interaction is significant, rather we must look
at the ANOVA table.
anova(mod3)

## Analysis of Variance Table
##
## Response: srich
## Df Sum Sq Mean Sq F value Pr(>F)
## NAP 1 23.8787 23.8787 75.0869 1.255e-10 ***
## Exposure 2 11.6166 5.8083 18.2643 2.527e-06 ***
## NAP:Exposure 2 2.4831 1.2416 3.9041 0.02848 *
## Residuals 39 12.4026 0.3180
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, the interaction is significant even if the model’s coefficients for NAP: Exposure10 and NAP: Exposure11
are not. These coefficients only indicate the difference between the slopes of srich vs. NAP for exposure levels
10 vs. 8 (in the first case) or 11 vs. 8 (in the second case). It is possible that the most significant difference is
between 10 and 11, as suggested by the prediction lines.
rikz$fit3 <- fitted(mod3)

ggplot(rikz, aes(x = NAP, y = srich, color = Exposure)) +
geom_point() +
geom_line(aes(y = fit3))
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Compared to the previous model, this approach is not only more parsimonious (fewer parameters to fit), but
it also allows us to explain the differences between beaches according to environmental parameters. We could
therefore apply the predictions of the model to other beaches as long as we know their exposure index.

In this case, it appears that the exposure index accounts for much of the variation between groups. However,
how could we include differences that remain between groups after controlling for the effect of this index?

In a classical linear regression context, it is not possible to include both a categorical variable indicating the
group and a group-level predictor. In the following example, since the mean differences in richness between
beaches (after controlling for the effect of the NAP) are fully taken into account by the Beach factor, there is
no variation left for the Exposure variable to explain.
mod_exp_beach <- lm(srich ~ NAP + Beach + Exposure, rikz)
summary(mod_exp_beach)

##
## Call:
## lm(formula = srich ~ NAP + Beach + Exposure, data = rikz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.58544 -0.28653 -0.06544 0.23657 1.69043
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.99457 0.26711 11.211 3.92e-13 ***
## NAP -0.66410 0.09655 -6.878 5.49e-08 ***
## Beach2 0.61544 0.37909 1.623 0.11346
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## Beach3 -1.21158 0.37491 -3.232 0.00268 **
## Beach4 -1.13596 0.38510 -2.950 0.00564 **
## Beach5 -0.32863 0.38648 -0.850 0.40093
## Beach6 -0.90219 0.37835 -2.385 0.02265 *
## Beach7 -0.98741 0.39419 -2.505 0.01705 *
## Beach8 -0.89080 0.38392 -2.320 0.02628 *
## Beach9 -0.79350 0.38561 -2.058 0.04712 *
## Exposure10 NA NA NA NA
## Exposure11 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5882 on 35 degrees of freedom
## Multiple R-squared: 0.7596, Adjusted R-squared: 0.6978
## F-statistic: 12.29 on 9 and 35 DF, p-value: 1.744e-08

Thus, we obtain NA values for the coefficients related to the exposure index. Note that the output of this
model is identical to that of mod2. If we had written the formula with Exposure before Beach, the model
would estimate the effects of the two coefficients of the exposure index, but in return, two of the beach effects
would become NA. In terms of predictions, it would be the same model.

An identical problem arises if one tries to model a variation of the slope of srich ~ NAP according to both
the exposure index and the beach. That model would be equivalent to mod2_inter above.
mod_exp_beach <- lm(srich ~ NAP * Exposure + NAP * Beach , rikz)
all.equal(fitted(mod_exp_beach), fitted(mod2_inter))

## [1] TRUE

Model 4: Two-step linear model

To solve the problem mentioned at the end of the previous section, we could first estimate the richness
differences between beaches from the site-level data, and then model the beach effects according to the
exposure index.

For the first step, we use model 2 above (intercept varies by beach), except that we add - 1 to the model
formula to force the intercept to be zero. This trick allows us to obtain coefficients for each beach that
correspond to the intercept for that beach, rather than a difference measured from a reference level. Note
that this trick only works for the first categorical variable in a regression.
mod4_1 <- lm(srich ~ NAP + Beach - 1, rikz)
summary(mod4_1)

##
## Call:
## lm(formula = srich ~ NAP + Beach - 1, data = rikz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.58544 -0.28653 -0.06544 0.23657 1.69043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## NAP -0.66410 0.09655 -6.878 5.49e-08 ***
## Beach1 2.99457 0.26711 11.211 3.92e-13 ***
## Beach2 3.61000 0.26440 13.653 1.39e-15 ***
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## Beach3 1.78298 0.26307 6.778 7.41e-08 ***
## Beach4 1.85861 0.26839 6.925 4.78e-08 ***
## Beach5 2.66594 0.26948 9.893 1.12e-11 ***
## Beach6 2.09238 0.26404 7.924 2.55e-09 ***
## Beach7 2.00715 0.27616 7.268 1.73e-08 ***
## Beach8 2.10377 0.26751 7.864 3.04e-09 ***
## Beach9 2.20106 0.26879 8.189 1.20e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5882 on 35 degrees of freedom
## Multiple R-squared: 0.9527, Adjusted R-squared: 0.9392
## F-statistic: 70.48 on 10 and 35 DF, p-value: < 2.2e-16

We then create a second dataset containing only the beaches and their exposure index. We use the distinct
function of dplyr, which extracts the unique combinations the specified variables from a data frame.
rikz_beach <- distinct(rikz, Beach, Exposure)
rikz_beach

## Exposure Beach
## 1 10 1
## 2 8 2
## 3 11 3
## 4 11 4
## 5 10 5
## 6 11 6
## 7 11 7
## 8 10 8
## 9 10 9

We then add to this data frame the beach intercepts obtained at step 1, which is the response we want to
model at step 2.
rikz_beach$coef <- coef(mod4_1)[-1] # Coefficient 1 is NAP

mod4_2 <- lm(coef ~ Exposure, rikz_beach)
summary(mod4_2)

##
## Call:
## lm(formula = coef ~ Exposure, data = rikz_beach)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3876 -0.1523 0.0000 0.1571 0.5032
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6100 0.3101 11.640 2.42e-05 ***
## Exposure10 -1.1187 0.3467 -3.226 0.01800 *
## Exposure11 -1.6747 0.3467 -4.830 0.00291 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3101 on 6 degrees of freedom
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## Multiple R-squared: 0.803, Adjusted R-squared: 0.7373
## F-statistic: 12.23 on 2 and 6 DF, p-value: 0.007645

One problem with this approach is that each beach is considered a single point at the second step. If the
number of samples differed from one beach to another, this model would under-represent the better-sampled
beaches. For this case, each beach has the same number of points and the estimated coefficients for the
exposure index are very close to those obtained by model 3.

Mixed linear models

Mixed models are conceptually similar to the two-step regression performed above, except that both steps
are performed simultaneously to account for the uncertainty of the group effects. This type of model is
particularly useful when one or more of the following conditions apply:

• the data are grouped or have a hierarchical structure at two or more levels (e.g.: plots grouped by sites
grouped by region);

• the explanatory variables are also defined at several levels;

• the number of groups is too large, or the number of observations in some groups is too small, to estimate
a separate effect for each group;

• there is more interest in variation between groups than in the effect of particular groups;

• we want to apply the model to new groups not represented in the data.

Mathematical representation of a linear mixed model

A linear mixed model is a linear regression where one or more of the coefficients vary from one group of
observations to another, and where this variation is modeled by a statistical distribution. They are also known
as hierarchical or multilevel models because they model the variation at least at two levels (individual and
group of observations).

We will start by dealing with mixed models where only the intercept varies by group. For that type of model,
the mean value of the response for observation k (ŷk) is the linear combination of the predictors x1, x2, and
so on, to which we add an intercept specific to the group j containing observation k: αj[k]. (We use α rather
than β0 for the intercept to simplify the notation a bit.)

ŷk = αj[k] + β1x1k + β2x2k + ...

Just like in the linear regression model, the observed yk follows a normal distribution around its mean. The
suffix y has been added to σ to specify that it is the standard deviation of the y.

yk ∼ N(ŷk, σy)

So far, this model is identical to a linear regression with a categorical variable, if αj was the intercept
for category j. The particular feature of mixed models is that the αj are random values from a normal
distribution with a mean µα and a standard deviation σα. In other words, the observed groups are part of a
“population” of possible groups and we wish to estimate the mean and the variance of α in that population.

αj ∼ N(µα, σα)

The group effect αj is called a random effect, as opposed to fixed effects that are independently estimated
without originating from a common distribution (for example, the m−1 coefficients of a factor of m categories
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in a classical linear regression). This model is called mixed because it contains both fixed effects (the β
associated with predictors x1, x2, etc.) and random effects.

There is no particular reason for choosing a normal distribution for αj . However, if all that is known of a
variable is its mean and its standard deviation, the normal distribution is in some sense the most likely, that
is, the one that brings the least additional assumptions.

Linear mixed model with R

In this example, we will fit a mixed model of the type shown above to the same data in rikz. The model
includes the NAP predictor and an intercept that varies by beach.

To estimate the parameters of a mixed model, we use the lmer function of the lme4 package. The formula
for a mixed model resembles those seen before, except for the last term: (1 | Beach). This term means that
the intercept (referred to as 1) varies between the levels of the Beach factor.
library(lme4)

mmod <- lmer(srich ~ NAP + (1 | Beach), rikz)
summary(mmod)

## Linear mixed model fit by REML ['lmerMod']
## Formula: srich ~ NAP + (1 | Beach)
## Data: rikz
##
## REML criterion at convergence: 97.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5693 -0.4286 -0.1869 0.3230 2.9399
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 0.2957 0.5438
## Residual 0.3460 0.5882
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.37424 0.20405 11.635
## NAP -0.68063 0.09501 -7.163
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.162

Let’s look at the different components of this result. The first line indicates that the model has been fit with
the restricted maximum likelihood (REML) method. Without going into too much detail, the maximum
likelihood produces a bias when estimating variances (random effects), and the REML serves to correct that
bias.

The random effects block contains the estimates for the variance and standard deviation of the intercept
(σα), as well as the residual variance and standard deviation (σy). The fixed effects block shows the estimate
for the mean intercept (µα) and the effect of the NAP. The summary also indicates the estimated correlation
between the two fixed effects. A negative correlation is to be expected when the mean value of the predictor
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is greater than zero: if the line is rotated around the mean so as to increase the slope, the position of the
intercept moves down the y axis (see diagram below).

x

y

Note that lmer does not provide a p-value for the estimated effects, because unlike the case of a linear
model, the exact distribution of these estimates is not known. We can nevertheless obtain approximate
confidence intervals with confint. The argument oldNames = FALSE ensures that the random effects are
clearly identified in the table.
confint(mmod, oldNames = FALSE)

## Computing profile confidence intervals ...

## 2.5 % 97.5 %
## sd_(Intercept)|Beach 0.2664346 0.9469885
## sigma 0.4682062 0.7455375
## (Intercept) 1.9537581 2.7916024
## NAP -0.8729868 -0.4948024

The effect of the NAP is therefore significant with a threshold of α = 0.05. The first two rows in the table
correspond to σα and σy, respectively. Standard deviations must be positive. A value less than or equal to
zero for a standard deviation or its confidence interval indicates that the model is incorrectly specified.

We can separately extract the fixed and random effects of the model with the fixef andranef functions.
fixef(mmod)

## (Intercept) NAP
## 2.3742423 -0.6806307
ranef(mmod)

## $Beach
## (Intercept)
## 1 0.4962684
## 2 1.0050819
## 3 -0.4791252
## 4 -0.4104708
## 5 0.2444787
## 6 -0.2252788
## 7 -0.2858167
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## 8 -0.2124511
## 9 -0.1326862
##
## with conditional variances for "Beach"

The random effects are the estimates of the difference between the intercept of each beach (1 to 9) and their
mean given by (Intercept). The estimated intercept for beach 1 is 2.37 + 0.50 = 2.87 and so on. Instead of
calculating these values for each beach, we can get them with the coef function.
coef(mmod)

## $Beach
## (Intercept) NAP
## 1 2.870511 -0.6806307
## 2 3.379324 -0.6806307
## 3 1.895117 -0.6806307
## 4 1.963771 -0.6806307
## 5 2.618721 -0.6806307
## 6 2.148964 -0.6806307
## 7 2.088426 -0.6806307
## 8 2.161791 -0.6806307
## 9 2.241556 -0.6806307
##
## attr(,"class")
## [1] "coef.mer"

The result of this function gives us the coefficients of the linear regression by group. Our model does not
include random effects on the coefficient of NAP, so it is constant for all groups.

What is the difference between these estimated effects for each beach and those of a classical linear model
where the Beach categorical variable was specified as a fixed effect? Let’s compare the prediction lines of the
mixed model (solid lines) with those of model 2 seen above (lm(srich ~ NAP + Beach), dotted lines). We
also add the line corresponding to model 1 which ignores the differences between beaches (dashed black line).
rikz$fitmm <- fitted(mmod)

ggplot(rikz, aes(x = NAP, y = srich, color = Beach)) +
geom_point() +
geom_line(aes(y = fit1), color = "black", linetype = "dashed") +
geom_line(aes(y = fit2), linetype = "dotted") +
geom_line(aes(y = fitmm))
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Predictions of the mixed model for each beach are shifted towards the overall mean. This effect is more
pronounced as one moves away from the mean (see for example beach 2 at the top of the graph). In statistics,
this is called a shrinkage of the group effects.

Other useful packages for mixed models

The lmerTest package adds approximate p-values to a lmer model, whereas the MuMIn package contains a
r.squaredGLMM function that calculates an equivalent of the R2 for mixed models.
library(lmerTest)
mmod <- lmer(srich ~ NAP + (1 | Beach), rikz)
summary(mmod)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: srich ~ NAP + (1 | Beach)
## Data: rikz
##
## REML criterion at convergence: 97.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5693 -0.4286 -0.1869 0.3230 2.9399
##
## Random effects:
## Groups Name Variance Std.Dev.
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## Beach (Intercept) 0.2957 0.5438
## Residual 0.3460 0.5882
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.37424 0.20405 8.36034 11.635 1.88e-06 ***
## NAP -0.68063 0.09501 37.15971 -7.163 1.68e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.162
library(MuMIn)
r.squaredGLMM(mmod)

## R2m R2c
## [1,] 0.4164714 0.6853641

In the output of r.squaredGLMM, the R2m value (marginal R2) estimates the fraction of the variance explained
by the fixed effects in the model, whereas the R2c value (conditional R2) estimates the fraction explained by
the fixed and random effects. Therefore, the conditional R2 is always greater than the marginal R2.

Mixed models as a compromise between underfitting and overfitting

What is happening here? Assuming that the effects of each beach come from a common distribution, the
mixed model estimates the intercept of each beach by taking into account not only the values measured at
that beach, but also those of the other beaches. It is therefore a compromise between underfitting (e.g. model
1, which totally ignores differences between beaches) and overfitting (e.g. model 2, which independently
estimates the mean intercept for each beach based on its 5 sites).

In other words, the differences between the mean values measured by group can be due either to real differences
in the response between the groups, or to random sampling. The ANOVA we saw earlier in this semester
would ask whether these differences between groups of observations are too large to be due to chance. The
mixed model attempts instead to estimate the portion of observed differences that is due to a real group
effect and the portion that is due to random sampling in each group.

Diagnostic plots

The plot function applied to a mixed model output only produces on graph, that of residuals vs. fitted
values.
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To reproduce the quantile-quantile plot of residuals, we can call the qqnorm andqqline functions. This
graph shows that the most extreme residuals are further from the mean than those predicted by the normal
distribution.
qqnorm(residuals(mmod))
qqline(residuals(mmod))
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In a mixed model, group effects are also assumed to follow a normal distribution. We test this assumption
with a quantile-quantile plot of random effects (ranef).
beach_coef <- ranef(mmod)$Beach
qqnorm(beach_coef$`(Intercept)`)
qqline(beach_coef$`(Intercept)`)
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Even with just 9 points, it is obvious that differences between beaches are not normally distributed.

Note that the influence measures of observations such as Cook distance do not apply to mixed models.

Mixed model with group-related predictor

At the end of the previous section, we saw that the differences between each beach and the overall mean do
not follow a normal distribution. Could some of that variation be explained by the exposure index measured
at the beach level?

To include the effect of a group-level predictor, we need to modify the model from the previous section. The
group-level intercept was defined by a normal distribution:

αj ∼ N(µα, σα)

In this case, µα is not a constant, but varies linearly with the predictor u1.

µα = γ0 + γ1u1

It is therefore a two-level regression model, where u1 is a group-level predictor and γ1 is the coefficient of
that predictor. From a conceptual point of view, it is useful to differentiate group-level and individual-level
predictors. However, we could also rewrite the model to separate the fixed effects (at both levels) and the
random effects (which have a mean of 0), for example:
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yk = γ0 + γ1u1j[k] + β1x1k + β2x2k + νj[k] + εk

In this representation, the value yk of observation k depends on the intercept γ0, a group-level predictor u1,
two individual-level predictors (x1, x2). The last two terms respectively represent the random variation for
group j and observation k:

νj ∼ N(0, σα)

εk ∼ N(0, σy)

We can think of νj as the part of the residual that is shared by all the observations of group j, while ε is an
independent residual from one observation to another. To fit this model in R, we simply add the predictor to
the formula in lmer. The estimate works without the need to explicitly tell R that the value of this variable
is the same for all observations in a group.
mmod_exp <- lmer(srich ~ NAP + Exposure + (1 | Beach), rikz)
summary(mmod_exp)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: srich ~ NAP + Exposure + (1 | Beach)
## Data: rikz
##
## REML criterion at convergence: 86
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.38707 -0.48281 -0.07465 0.47962 3.03495
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 0.02315 0.1521
## Residual 0.34658 0.5887
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.62081 0.30510 5.76006 11.867 2.89e-05 ***
## NAP -0.70349 0.09107 40.64879 -7.724 1.69e-09 ***
## Exposure10 -1.11766 0.33998 5.69172 -3.287 0.0180 *
## Exposure11 -1.66923 0.34021 5.70544 -4.907 0.0031 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) NAP Exps10
## NAP -0.082
## Exposure10 -0.891 -0.007
## Exposure11 -0.888 -0.037 0.800

Some notes on this result:

• The estimate of σα (0.15) has decreased compared to its value in the previous model (0.54), showing
that the predictor explains a good amount of the variation observed between the groups. The standard
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deviation of individual observations (0.59) has not changed, which is expected because a group-level
predictor cannot explain the differences between observations of the same group.

• Correlations between the fixed effects (Intercept), Exposure10, and Exposure11 are to be expected.
With the default contrasts in R, (Intercept) is the intercept for the reference level of the variable
(Exposure = 8), Exposure10 is the difference between levels 10 and 8, and Exposure11 is the difference
between levels 11 and 8. So, if the estimate of the mean for level 8 increases, the two differences (10 - 8
and 11 - 8) decrease.

Note that after taking into account the effect of the exposure index, the random group effects are closer to a
normal distribution.
beach_coef <- ranef(mmod_exp)$`Beach`
qqnorm(beach_coef$`(Intercept)`)
qqline(beach_coef$`(Intercept)`)
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Intra-class correlation

In the mixed models presented above, σα represents the standard deviation of the mean response between
groups while σy represents the standard deviation of the response between observations of the same group.

The intra-class correlation is defined as the ratio:

σ2
α

σ2
α + σ2

y
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This ratio approaches 0 if σy � σα (the variation between groups is negligible compared to the variation
between individuals of the same group) and approaches 1 if σα � σy (almost all the variation is due to
differences between groups).

The intra-class correlation is about 0.45 for the first model (mmod) and decreases to 0.06 taking into account
the exposure index (model mmod_exp).

From a practical point of view, the intra-class correlation indicates which scale contributes more to the
variation of the response, so at which scale we could sample more to reduce the uncertainty of the model.
In our example, if this correlation was close to 1, it would be better to sample multiple beaches with few
samples per beach; if not, we could get a larger sample over a limited number of beaches. Of course, this
assumes that the beaches observed so far are representative of the “population” of beaches that interest us.

Summary

• A linear mixed model (also called a multilevel model) is an extension of linear regression for grouped
data, where some of the coefficients vary randomly from one group to another.

• In this class, we have seen examples where intercept includes a random effect. In the next class, we’ll
see how to add random effects to other coefficients.

• A mixed model is a compromise between a linear regression that ignores the group structure and a
regression that estimates a separate fixed effect for each group.

• To do this, the mixed model corrects the estimation of the effects of each group to bring them closer to
the general trend (shrinkage).

• In classical linear regression, one cannot include both a fixed effect per group and a group-level predictor.
A mixed model can include both the random effect of groups and an explanatory variable defined at
the group level.
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