
Linear mixed models, part 2

November 22, 2021

Review

In the last class, we saw different ways of treating grouped data in the context of a “classical” linear regression:
ignore groups, estimate effects separately for each group, or indirectly account for groups based on group-level
predictors.

• On the one hand, ignoring the grouped data structure can lead to an overestimate of the precision of
the inferences, since the significance tests and confidence intervals of the linear regression are based on
the assumption that the residuals are all independent; this is not the case when the residuals of the
same group are correlated.

• On the other hand, estimating fixed effects for each group may lead to overestimation of differences
between groups, especially when there are few observations per group; in this case, a large part of the
observed differences is due to random sampling.

This discussion led us to consider linear mixed models to represent this type of data.

• Unlike linear regression that includes only one random term (individual-level residuals), mixed models
include the random variation shared by the observations of the same group.

• Mixed models also produce estimates of the regression coefficients for each group, but assuming a
normal distribution of these coefficients centered on the average of the groups. Compared to group
fixed effects, these coefficients are “shrunk” towards the overall average. This allows for more reliable
estimates even with few observations per group.

Objectives

• Understand how mixed models deal with unbalanced groups.

• Make predictions from a linear mixed model.

• Create models with the random effect of several variables and the random effect of a variable on more
than one coefficient.

• Apply model selection with AIC to mixed models.

Mixed models for unbalanced groups

In the examples seen in the last class and lab, the number of observations was balanced between the groups.
Mixed models also have interesting properties for cases where groups do not contain the same number of
observations, as we will see in the next example.
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Example: House radon concentration in Minnesota

The dataset radon.csv, from the textbook by Gelman and Hill, contains radon concentration measurements
(log_radon, on a logarithmic scale) from 919 houses in 85 counties (county) of the American state of
Minnesota. The number of houses sampled per county ranges from 1 to 116. This dataset includes a
house-level predictor, the floor where the measurement was taken (with 0 = basement and 1 = ground floor),
and a county-level predictor, the soil uranium level (also on a logarithmic scale).
radon <- read.csv("../donnees/radon.csv")
head(radon)

## county floor log_uranium log_radon
## 1 AITKIN 1 -0.6890476 0.7884574
## 2 AITKIN 0 -0.6890476 0.7884574
## 3 AITKIN 0 -0.6890476 1.0647107
## 4 AITKIN 0 -0.6890476 0.0000000
## 5 ANOKA 0 -0.8473129 1.1314021
## 6 ANOKA 0 -0.8473129 0.9162907

We estimate the parameters of a mixed model with fixed effects of the floor and uranium level, as well as a
random variation of the intercept by county.
library(lme4)
mm_radon <- lmer(log_radon ~ floor + log_uranium + (1 | county), radon)
summary(mm_radon)

## Linear mixed model fit by REML ['lmerMod']
## Formula: log_radon ~ floor + log_uranium + (1 | county)
## Data: radon
##
## REML criterion at convergence: 2134.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.9673 -0.6117 0.0274 0.6555 3.3848
##
## Random effects:
## Groups Name Variance Std.Dev.
## county (Intercept) 0.02446 0.1564
## Residual 0.57523 0.7584
## Number of obs: 919, groups: county, 85
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.46576 0.03794 38.633
## floor -0.66824 0.06880 -9.713
## log_uranium 0.72027 0.09176 7.849
##
## Correlation of Fixed Effects:
## (Intr) floor
## floor -0.357
## log_uranium 0.145 -0.009

How can fixed effects be interpreted in this model?

• (Intercept) is the mean of log_radon if floor = 0 (i.e. in a basement) and log_uranium = 0.
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• floor is the difference of log_radon if floor increases by 1 (i.e. ground floor compared to the
basement).

• log_uranium is the effect of an increase of one unit of log_uranium on log_radon. In the particular case
where the two variables are on a logarithmic scale, this coefficient can be interpreted as a multiplicative
effect: a 1% increase in the concentration of uranium in the soil increases the concentration of radon in
homes by 0.72%.

Now let’s use the model to predict log_radon for a basement in each county. First, we extract the county
name, the uranium concentration and the number of houses per county (that number will be useful later).
comtes <- group_by(radon, county, log_uranium) %>%

summarize(n = n()) %>%
ungroup()

## `summarise()` has grouped output by 'county'. You can override using the `.groups` argument.

Here is the graph of county-level predicted values:
comtes$floor <- 0 # basement
comtes$mm_pred <- predict(mm_radon, comtes)

ggplot(comtes, aes(x = log_uranium, y = mm_pred)) +
geom_point()
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These predictions deviate from the mean linear trend based on the estimated intercepts for each county
(random effects).

Let’s now compare these predictions to those of two classical linear regressions, one with no county effect or
one with fixed effects for each county.
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lm_radon1 <- lm(log_radon ~ floor + log_uranium, radon)
lm_radon2 <- lm(log_radon ~ floor + log_uranium + county, radon)

comtes <- mutate(comtes, pred1 = predict(lm_radon1, comtes),
pred2 = predict(lm_radon2, comtes))

ggplot(comtes, aes(x = log_uranium)) +
labs(y = "log_radon") +
geom_line(aes(y = pred1)) +
geom_point(aes(y = pred2), shape = 1) +
geom_point(aes(y = mm_pred))
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The line represents the prediction of the model ignorning the county, the filled points indicate the county
effects of the mixed model, and the hollow points indicate the fixed effects by county. The predictions of the
mixed model are closer to the mean trend, showing the shrinkage of the coefficients for the mixed model.

Now let’s look at the effect of the n, the sample size in each county. For clarity, the two predictions of the
same county are connected by a dotted line.
ggplot(comtes, aes(x = log_uranium)) +

labs(y = "log_radon") +
geom_line(aes(y = pred1)) +
geom_point(aes(y = pred2, size = n), shape = 1) +
geom_point(aes(y = mm_pred, size = n)) +
geom_segment(aes(xend = log_uranium, y = mm_pred, yend = pred2),

linetype = "dotted")
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This result shows that the smaller the sample size in a county, the more its effect is shrunk towards the mean.
In other words, the fewer points in a county, the more the deviation observed between that county and the
overall trend is likely to be due to random sampling, and the more the mixed model must “correct” this value
by bringing it closer to that of the general trend.

Predictions from a mixed model

At the last class, we saw the following representation for a mixed model with predictors measured at the
individual level (observation k) and at the group level (group j), as well as an intercept that varies randomly
between groups.

yk = γ0 + γ1u1j[k] + β1x1k + νj[k] + εk

In our previous example, the value of yk is the sum of the mean intercept γ0 (the value reported as Intercept
by R), the effects of individual-level (x1: floor) and group-level (u1: uranium concentration) predictors, the
random group effect ν and a residual ε.

The fixef function gives us the estimates of γ0, γ1 and β1, whileranef shows the estimated random effects
νj .
eff_fixes <- fixef(mm_radon)
eff_fixes

## (Intercept) floor log_uranium
## 1.4657628 -0.6682448 0.7202676
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eff_alea <- ranef(mm_radon)$county
head(eff_alea)

## (Intercept)
## AITKIN -0.020642363
## ANOKA 0.011245769
## BECKER 0.012422028
## BELTRAMI 0.111128434
## BENTON 0.008235846
## BIG STONE -0.026196357

Earlier, when we predicted basement radon concentration for each county, the predict function used both
fixed and random effects estimates. In other words, the predicted value ŷ for a basement (x1 = 0) in county j
is given by:

ŷ = γ̂0 + γ̂1u1j + ν̂j

,

where the hat symbols mean that we use the estimated values of each coefficient. Therefore we could manually
calculate the predictions for each county as follows.
pred_man <- eff_fixes["(Intercept)"] +

eff_fixes["log_uranium"] * comtes$log_uranium + eff_alea$`(Intercept)`

all.equal(pred_man, comtes$mm_pred)

## [1] "names for current but not for target"

Predictions for a new group

If we try to predict the basement radon concentration for a group (county) not included in the model, R
generates an error.
nouv_comte <- data.frame(county = "NOUVEAU", log_uranium = 0.5, floor = 0)
predict(mm_radon, nouv_comte)

## Error in levelfun(r, n, allow.new.levels = allow.new.levels): new levels detected in newdata

By default, the predict function applied to the lmer result tries to use all the random effects. To make a
prediction based only on fixed effects, we need to specify the argument re.form = ~ 0.
predict(mm_radon, nouv_comte, re.form = ~0)

## 1
## 1.825897

We can verify that this prediction was made only based on fixed effects.
eff_fixes["(Intercept)"] + eff_fixes["log_uranium"] * nouv_comte$log_uranium

## (Intercept)
## 1.825897

With a mixed model, it is therefore possible to make predictions for groups that were not in the original
data, by using the prediction of an “average” group (with a group random effect equal to 0). Of course, the
uncertainty associated with this prediction is greater than when predicting new observations for an existing
group.
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The predict function does not provide confidence intervals or prediction intervals for mixed models. These
intervals can be estimated by simulating data from the model. These simulation-based methods are not
covered in this course, but are part of the course Analyses des données complexes.

Multiple random effects

Example: Growth of spruce on several sites

Consider again the example seen at the beginning of the last class. We want to model the annual growth
of white spruce on different sites. For five consecutive years, we measured annual growth of the same 100
trees based on two predictors (x1, x2; say the diameter and age) that vary for each observation (tree and
year). We also know the value of a predictor (u1; say the slope) that is fixed at the site level. How could we
represent these data with a linear mixed model?

To choose the random effects of the model, we can ask the following question: for which groups of observations
would the variation of the response be correlated (between observations of the same group)? In this case:

• observations made on the same tree from one year to the next;
• observations of two trees taken the same year; and
• observations made on trees at the same site

may be correlated. We therefore include three random effects in the model (tree, site and year).

The value of yk, corresponding to the growth of the tree i at site j during the year t, is represented by the
model:

yk = γ0 + γ1u1j[k] + β1x1k + β2x2k + νj[k] + ξi[k] + τt[k] + εk

In R, if slope represents the slope of the site and DBH and age are individual-level predictors, that model
could be specified as:

growth ~ slope + DBH + age + (1 | site) + (1 | tree_id) + (1 | year)

From a model structure point of view, two random effects can be either crossed or nested.

• The effects of the tree and the year are crossed: each tree is measured for several years and several
trees are measured each year. In the same way, the effects of the site and the year are crossed.

• The effects of the tree and the site are nested: each tree is associated with one site.

To tell R that effect A is nested in effect B, we use a term like (1 | B / A). In this case, the formula could
be rewritten as:

growth ~ slope + DBH + age + (1 | site / tree_id) + (1 | year)

If the tree ID numbers are not repeated from one site to another, it is not necessary to specify the nested
effects: the two formulas are equivalent to lmer. However, if the trees were numbered 1, 2, . . . for each site,
it would be necessary to use the formula with the nested effect: otherwise, R would assume that the trees
labelled “1” in each site represent the same individual.

Example: Split-plot experiment design

The Oats data frame in the nlme package shows the results of a split-plot agricultural experiment. The
experiment is done in six blocks. Each block is divided into three sections where a different variety of oats is
sown, then each section is divided into four quadrants which each receive a different concentration of nitrogen
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(nitro): 0, 0.2, 0.4 or 0.6. The response variable is oat yield for each of the 72 quadrants (6 blocks x 3
varieties x 4 nitrogen concentrations).
library(nlme)
# Change block to an unrdered factor
Oats$Block <- factor(Oats$Block, ordered = FALSE)
head(Oats)

## Grouped Data: yield ~ nitro | Block
## Block Variety nitro yield
## 1 I Victory 0.0 111
## 2 I Victory 0.2 130
## 3 I Victory 0.4 157
## 4 I Victory 0.6 174
## 5 I Golden Rain 0.0 117
## 6 I Golden Rain 0.2 114

Here is an example of a possible spatial configuration for this experiment. The planted varieties (colors)
are randomly assigned to the three sections of each block and the nitrogen concentrations (numbers) are
randomly assigned to the quadrants of each section.

The split-plot design is a way of replicating two experimental treatments across several blocks. Its particular
feature is that one of the treatments (here, the variety of oats) is applied to a larger surface and another
treatment (here, the concentration of nitrogen) is nested within the first.

We can first define a random effect of the block, which represents the fact that the variance of the response is
smaller between observations of the same block than between observations of different blocks. This could be
due for example to unmeasured environmental gradients in the plot.
mm_oats <- lmer(yield ~ nitro + Variety + (1 | Block), Oats)

For the same reason, it is possible that the variance is smaller between quadrants of the same section; we can
take into account this second level of grouping by including a random effect of the section (variety) nested in
that of the block.
mm_oats2 <- lmer(yield ~ nitro + Variety + (1 | Block / Variety), Oats)
summary(mm_oats2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: yield ~ nitro + Variety + (1 | Block/Variety)
## Data: Oats
##
## REML criterion at convergence: 578.9
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##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.62948 -0.65841 -0.07207 0.55785 1.71463
##
## Random effects:
## Groups Name Variance Std.Dev.
## Variety:Block (Intercept) 108.9 10.44
## Block (Intercept) 214.5 14.65
## Residual 165.6 12.87
## Number of obs: 72, groups: Variety:Block, 18; Block, 6
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 82.400 8.059 10.225
## nitro 73.667 6.781 10.863
## VarietyMarvellous 5.292 7.079 0.748
## VarietyVictory -6.875 7.079 -0.971
##
## Correlation of Fixed Effects:
## (Intr) nitro VrtyMr
## nitro -0.252
## VartyMrvlls -0.439 0.000
## VarityVctry -0.439 0.000 0.500

At first glance, it seems contradictory to use the same Variety variable as a fixed effect and as a random
effect. However, the random effect does not apply to the differences between the 3 varieties (it would be
incorrect to write (1 | Variety)), but rather to the differences between the 18 sections represented by the
combinations of a block and of a variety. This is why this random effect is noted as a Variety: Block
interaction in the summary.

By looking at the confidence intervals of these two models, we notice that the second gives a wider confidence
interval for the fixed effects of the varieties, but a narrower interval for the effect of nitrogen.
confint(mm_oats, oldNames = FALSE)

## Computing profile confidence intervals ...

## 2.5 % 97.5 %
## sd_(Intercept)|Block 8.126934 29.461033
## sigma 12.737325 17.936286
## (Intercept) 67.144282 97.655713
## nitro 57.976482 89.356851
## VarietyMarvellous -3.302201 13.885535
## VarietyVictory -15.468868 1.718868
confint(mm_oats2, oldNames = FALSE)

## Computing profile confidence intervals ...

## 2.5 % 97.5 %
## sd_(Intercept)|Variety:Block 4.211239 16.580608
## sd_(Intercept)|Block 5.476922 29.072388
## sigma 10.674601 15.588813
## (Intercept) 66.501050 98.298960
## nitro 60.261178 87.072155
## VarietyMarvellous -8.458427 19.041762
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## VarietyVictory -20.625094 6.875096

How can we explain these differences?

• In the first model, we assumed that all observations were independent within a block. In the second
model, the observations of the same section are correlated, so we do not really have 4 independent
replicates of each variety. This increases uncertainty about the effect of varieties.

• On the other hand, considering the random effects by section, the residual variance between observations
of the same section is reduced. Since the 4 levels of nitrogen concentration are replicated in each section,
a smaller residual variance helps to reduce uncertainty about the effect of this predictor.

Mixed model with random slope

Let’s take a look at the rikz dataset seen at the last class, presenting the species richness of 45 intertidal
sites across 9 beaches in the Netherlands.
rikz <- read.csv("../donnees/rikz.csv")
# Fix the categorical variables
rikz <- mutate(rikz, Beach = as.factor(Beach),

Exposure = as.factor(Exposure))
# Transform the response
rikz <- mutate(rikz, srich = sqrt(Richness))
head(rikz)

## Sample Richness Exposure NAP Beach srich
## 1 1 11 10 0.045 1 3.316625
## 2 2 10 10 -1.036 1 3.162278
## 3 3 13 10 -1.336 1 3.605551
## 4 4 11 10 0.616 1 3.316625
## 5 5 10 10 -0.684 1 3.162278
## 6 6 8 8 1.190 2 2.828427

The following model includes a fixed effect of the position of the site relative to the mean sea level (NAP)
and a random variation of the intercept between the beaches.
mm_rikz <- lmer(srich ~ NAP + (1 | Beach), rikz)

Note: To avoid complicating the model, we ignore the Exposure group-level predictor for now.

We could also consider a case where the effect of the NAP on the response varies from one beach to another.
Our model would therefore take the form:

ŷk = αj[k] + βj[k]xk

,

where the intercept and slope of y vs. x both vary from group to group. In this case, the mixed model
assumes that αj and βj follow a normal distribution with a standard deviation of σα and σβ , respectively.
However, the model does not assume that the two effects are independent. As we saw in the last class, the
intercept and slope of a regression can be correlated, so the model also estimates their correlation ραβ .

In R, to represent a random variation of the effect of one of the predictors, we add this predictor on the left
part of the random effect term:
mm_rikz2 <- lmer(srich ~ NAP + (1 + NAP | Beach), rikz)
summary(mm_rikz2)
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## Linear mixed model fit by REML ['lmerMod']
## Formula: srich ~ NAP + (1 + NAP | Beach)
## Data: rikz
##
## REML criterion at convergence: 92.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6245 -0.4430 -0.1095 0.3023 2.1610
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Beach (Intercept) 0.4389 0.6625
## NAP 0.1582 0.3978 -0.41
## Residual 0.2159 0.4647
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.4369 0.2348 10.379
## NAP -0.7026 0.1543 -4.552
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.390

Here, the correlation between the intercept and the slope random effects is -0.41, as shown in the Corr column
of the random effects table. The fixed effect of NAP now represents the mean slope for all beaches.

As before, the coefficients estimated for each beach can be viewed with coef.
coef(mm_rikz2)

## $Beach
## (Intercept) NAP
## 1 3.022771 -0.4129465
## 2 3.485563 -0.6702417
## 3 1.840190 -0.5388216
## 4 1.816460 -0.4861710
## 5 3.149914 -1.4983867
## 6 2.067750 -0.4565699
## 7 2.003302 -0.6094925
## 8 2.142433 -0.6761907
## 9 2.404104 -0.9748255
##
## attr(,"class")
## [1] "coef.mer"

The following graph shows the variation of prediction lines between beaches for this model. Due to the
shrinkage effect, the slope varies less than in the model estimating a fixed effect of the interaction between
NAP and beach (see lecture notes for the last class).
rikz$fit2 <- fitted(mm_rikz2)

ggplot(rikz, aes(x = NAP, y = srich, color = Beach)) +
geom_point() +
geom_line(aes(y = fit2))
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Model selection

The process of comparing and selecting models is more complex for mixed models, since both fixed and
random terms must be chosen.

For example, compare the AICc of the two previous models for species richness vs. NAP in the rikz data:
(1) the model with varying intercepts by beach and (2) the model varying intercepts and slopes.
library(AICcmodavg)

aictab(list(mm_rikz = mm_rikz, mm_rikz2 = mm_rikz2))

## Warning in aictab.AIClmerMod(list(mm_rikz = mm_rikz, mm_rikz2 = mm_rikz2)):
## Model selection for fixed effects is only appropriate with ML estimation:
## REML (default) should only be used to select random effects for a constant set of fixed effects

##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt Res.LL
## mm_rikz 4 106.15 0.0 0.57 0.57 -48.57
## mm_rikz2 6 106.75 0.6 0.43 1.00 -46.27

As we saw in the last lesson, the lmer function estimates the mixed model parameters using the restricted
maximum likelihood method (REML), in order to obtain unbiased estimates of the variance parameters. The
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warning indicates that the AIC(c) calculated on models fit by REML is only valid for the comparison of
models with the same fixed effects, but different random effects.

In their manual, Zuur et al. (2009) suggest the following protocol:

1. First, include all the fixed effects of interest and choose, if necessary, between different versions of the
random effects. This step is based on the AIC of models fitted by REML.

2. Keep the random effects chosen in the previous step and compare different versions of the fixed effects.
This step requires comparing the models fitted by maximum likelihood, not by REML (with the REML
= FALSE option oflmer).

3. Refit the best model by REML to get the final estimates.

This protocol is based on the idea that it is better to simplify the random effects before simplifying the fixed
effects, since we are generally more interested in the estimation of the fixed effects.

In our example, suppose that our complete fixed-effects model takes the form srich ~ NAP + Exposure.
Let’s first determine whether or not to include the random effect of the beach on the NAP coefficient.
mod_comp <- lmer(srich ~ NAP + Exposure + (1 | Beach), rikz)
mod_comp2 <- lmer(srich ~ NAP + Exposure + (1 + NAP | Beach), rikz)

aictab(list(mod_comp = mod_comp, mod_comp2 = mod_comp2))

## Warning in aictab.AIClmerMod(list(mod_comp = mod_comp, mod_comp2 = mod_comp2)):
## Model selection for fixed effects is only appropriate with ML estimation:
## REML (default) should only be used to select random effects for a constant set of fixed effects

##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt Res.LL
## mod_comp 6 100.18 0.0 0.8 0.8 -42.98
## mod_comp2 8 102.98 2.8 0.2 1.0 -41.49

We thus choose the first model (random effect on intercept only). Next, compare models with or without the
exposure index. Since we compare different fixed effects, we have to refit the models with ML rather than
REML.
mod_comp_ml <- lmer(srich ~ NAP + Exposure + (1 | Beach), rikz, REML = FALSE)

## boundary (singular) fit: see ?isSingular
mod_nap_ml <- lmer(srich ~ NAP + (1 | Beach), rikz, REML = FALSE)

aictab(list(mod_comp_ml = mod_comp_ml, mod_nap_ml = mod_nap_ml))

##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt LL
## mod_comp_ml 6 92.13 0.0 0.99 0.99 -38.96
## mod_nap_ml 4 101.83 9.7 0.01 1.00 -46.42

In conclusion, the best model includes the effect of the NAP and exposure, as well as a random effect of the
beach on the intercept.
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Fixed or random effect?

Since a different method is required to compare models with different random effects (REML) or with different
fixed effects (ML), the AIC cannot be used to determine whether a variable should be considered a fixed or
random effect, e.g. we cannot compare srich ~ NAP + Beach with srich ~ NAP + (1 | Beach).

It is therefore necessary to determine a priori which variables constitute fixed or random effects. Here are
some guidelines for choosing whether a categorical variable should be included as a random effect:

• If the purpose of the model is to estimate the effect of one or more specific treatments on the response,
the variable representing these treatments should be a fixed effect.

• If the categorical variable has only two levels (binary), it must be considered as a fixed effect. With
more than two levels, it is possible to estimate a random effect; however, the smaller the number of
levels, the more uncertain the variance estimate between groups, so there is less benefit from using a
random effect.

• With several groups and few observations in some of these groups, it is better to use a random effect.

• If we are less interested in the differences between particular groups, but rather in describing the
variation between groups and possibly extending the scope of the model to groups not present in the
data, it is preferable to use a random effect.

Finally, there is no harm in including a random effect even if this effect does not explain much of the variance.
For example, in the model srich ~ NAP + Exposure + (1 | Beach), there was very little variation between
beaches after controlling for the Exposure variable, as indicated by the intra-class correlation of 0.06. The
purpose of the random effects is not to detect significant differences between groups, but rather to take into
account the hierarchical structure of the variation of the response, in order to obtain better estimates of the
fixed effects and their uncertainty.

Summary

• Mixed models estimate random effect parameters based on the number of observations per group: the
fewer observations per group, the more its effect is shrunk towards the overall average.

• To predict a new observation in an existing group, we use the estimated random effect for that group.
To predict a new observation in a new group, we use only fixed effects (the effect of an “average” group).

• Several random effects can be included in the same model. These effects can be nested or crossed. If
the levels of the variable A are nested in those of the variable B, their random effect is represented by
(1 | B / A) in the model formula.

• A variable can have a random effect on the intercept and on the coefficient (slope) of an individual
predictor. This indicates that the effect of the predictor on the response varies from group to group,
similar to an interaction in a classical linear model.

• The AIC(c) is a valid measure for the comparison of models with different random effects and the same
fixed effects, or with different fixed effects and the same random effects. These models must be adjusted
by REML in the first case and by ML (REML = FALSE) in the second case.
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