
Multivariate analysis, Part 2

December 6, 2021

Objectives

• Apply appropriate dissimilarity measures between observations of ecological community matrices
(abundance or presence / absence).

• Compare different methods for the ordination of community data: correspondence analysis, principal
coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS).

• Overlay environmental gradients to the results of an ordination of ecological communities.

• Use constrained ordination (redundancy analysis and canonical correspondence analysis) to represent
the variation between observations explained by predictors.

Species abundance or presence data

In ecology, multivariate data often takes the form of a table indicating the abundance (number of individuals,
% cover) of different species on each of the sites studied.
esp <- cbind(esp1 = c(2, 8, 0, 3), esp2 = c(1, 3, 0, 0), esp3 = c(0, 0, 1, 0))
rownames(esp) <- c("site1", "site2", "site3", "site4")
esp

## esp1 esp2 esp3
## site1 2 1 0
## site2 8 3 0
## site3 0 0 1
## site4 3 0 0

In some cases, we do not have a numerical estimate of abundance, but only a binary presence (1) or absence
(0) indicator for each species / site combination.

Problems with Euclidean distance

Last week, we applied ordination (principal component analysis) and clustering methods to continuous
numerical variables, such as climate data of a location or the chemical composition of a sample. For this type
of variable, Euclidean distance was a good measure of distance between two observations in a multivariate
space (n observations of p variables). That distance is the sum of the squared deviations between the two
observations for each of the variables:

dij =

√√√√ p∑
k=1

(yik − yjk)2

In this equation, i and j are indices denoting observations (rows) and k is the index of the variable (column).
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Principal component analysis, which orders the axes according to their contribution to the total variance,
aims in particular to represent the Euclidean distances between the points, since the variance is based on
squared deviations from the mean.

Euclidean distance is not a good measure for the dissimilarity of ecological communities between two sites.
In the example above, this distance is 6.3 between sites 1 and 2, but only 2.4 between sites 1 and 3. Yet, 1
and 2 share the same species in similar proportions while 1 and 3 have no species in common.
dist(esp)

## site1 site2 site3
## site2 6.324555
## site3 2.449490 8.602325
## site4 1.414214 5.830952 3.162278

Another problem with Euclidean distance is the way it treats zeros. All other things being equal, two sites
where one species is absent (0) are more similar according to this measure than two sites where the species is
present at slightly different levels. However, ecologists generally prefer not to treat the absence of a species at
two sites as an indicator of similarity between these sites. According to the concept of ecological niche, each
species is subject to several environmental constraints. If the presence of the same species at two sites may
be indicative of habitat similarity, this is less true for a common absence, as the two sites may be unfavorable
to the species for different reasons.

Distance measurements for abundances

The Bray-Curtis distance dij(BC) (often called Bray-Curtis dissimilarity) is a better measure for species
abundance data:

dij(BC) =
∑p
k=1 |yik − yjk|
yi· + yj·

where yi· and yj· represent the total abundance (all species combined) of the sites i and j. The Bray-Curtis
distance thus measures the ratio between the sum of the differences (in absolute value) between the abundances
for each species and the total number of individuals of all the species. It takes a minimum value of 0 when
the observed abundance is the same for each species and a maximum value of 1 when the sites have no species
in common.

This measure of distance, as well as several others used in ecology, can be calculated with the vegdist
function of the vegan package, a specialized R package for community ecology.
library(vegan)

vegdist(esp, method = "bray")

## site1 site2 site3
## site2 0.5714286
## site3 1.0000000 1.0000000
## site4 0.3333333 0.5714286 1.0000000

Although it is not obvious in this example, the Bray-Curtis distance, like all the other distance measures in
this section, is indifferent to species absent from both sites. However, it is sensitive to variations in total
abundance between two sites (e.g. sites 1 and 2).

If we are interested in the relative abundance of species for a site (sometimes called site composition or
profile) rather than raw abundances, we can divide abundances by their total for each site. By calculating
the Euclidean distance between the obtained proportions, we obtain the distance between profiles:
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dij(prof) =

√√√√ p∑
k=1

(
yik
yi·
− yjk
yj·

)2

The Hellinger distance is similar to the distance between profiles, but it is calculated from the square root
of the proportions:

dij(Hel) =

√√√√ p∑
k=1

(√
yik
yi·
−
√
yjk
yj·

)2

The decostand function of vegan can perform several transformations on the community data matrices. With
method = "total", the function divides each row of the matrix by its sum (site profile); with method =
"hellinger", it applies the division then takes the square roots. The Hellinger distance can then be obtained
by applying the function dist to the resulting matrix.
esp_hel <- decostand(esp, method = "hellinger")
dist(esp_hel)

## site1 site2 site3
## site2 0.06600048
## site3 1.41421356 1.41421356
## site4 0.60581089 0.54258112 1.41421356

Note that the distance between sites 1 and 2 (which have almost the same profile but a different total
abundance) is much smaller with this measure than with Bray-Curtis. The maximum value for the distance
between profiles or the Hellinger distance, obtained when the sites have no species in common, is not 1 but
rather

√
2 (about 1.414).

According to Legendre and Legendre (2012), the Hellinger distance responds more linearly to the changes in
abundance of a species. The Hellinger transformation is therefore recommended if we want to carry out a
PCA on abundance data. We will see in the next section other ordination methods for this type of data.

Finally, the χ2 distance is similar to the distance between profiles, except that the contribution of a species
k is divided by pk, the fraction of all the individuals of all sites from that species. Compared to other
measures, this distance increases the importance of rare species in the determination of dissimilarity between
sites.

dij(χ2) =

√√√√ p∑
k=1

1
pk

(
yik
yi·
− yjk
yj·

)2

In R, this distance is also calculated from a transformation with decostand followed by the calculation of
the Euclidean distance on the transformed data.
esp_chi2 <- decostand(esp, method = "chi.square")
dist(esp_chi2)

## site1 site2 site3
## site2 0.1470196
## site3 4.3721144 4.3665855
## site4 0.8086075 0.6615880 4.4027963

The maximum value of d(χ2) is equal to
√

2N where N is the sum of all entries in the matrix. This maximum
value is reached only if each of the two sites compared is composed of a single species (and a different one).
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Which of these distances to use in a cluster analysis, for example? It depends on the focus on different types
of differences. In particular, we will choose:

• the Bray-Curtis distance if the absolute differences of abundance (number of individuals) between sites
are important;

• the Hellinger distance if we are concerned about the relative differences in abundance (proportion of
individuals) between sites and we want to give more emphasis to common species;

• the χ2 if we are concerned about relative differences and want to give greater importance to rare species.

Distance measures for presence data

With data on the presence or absence of species, we can summarize the relationship between two sites by a
2x2 table.

In this table, a represents the number of species present at both sites, b the number of species present at site
1 but not at site 2, and so on.

The Jaccard index measures the similarity between two sites:

J = a

a+ b+ c

That index takes values between 0 (no common species) and 1 (same species). The Sorenson index is
similarly defined, except that species present at both sites are counted twice.

S = 2a
2a+ b+ c

To define a distance (dissimilarity) from these indices, we can apply the transformation 1− J or 1− S. Note
that neither index takes into account species absent from both sites (d in the table above); as mentioned
earlier, species in that group give little information on the similarity between sites.

The function vegdist(..., method = "jaccard") calculates the Jaccard distance (1− J). As for 1− S,
its value exactly matches the Bray-Curtis distance applied to a binary matrix.

Ordination of ecological community matrices

Correspondence analysis

If principal component analysis (PCA) is an ordination method adapted to continuous numeric data,
correspondence analysis is an ordination adapted to contingency tables. Remember that a contingency
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table is a matrix representing the number of observations (the frequency f) for each combination of the levels
of two categorical variables. In ecology, a community matrix (either abundance or presence / absence) can be
considered as a contingency table for the categorical variables “site” and “species”.

In the class on χ2 tests, we saw that the expected frequency for a cell (i, j) of the table, if the two variables
are independent, equals f̂ij = NiNj/N , where Ni is the sum of the frequencies in row i, Nj is the sum of
the j column and N is the total of all frequencies of the table. The χ2 statistic is based on a standardized
version of the deviations between observed and expected frequencies:

χij = fij − f̂ij√
f̂ij

The χ2 is the sum of the squared χij residuals. In an ecological context, a large positive residual indicates
that the i site is very favorable for the j species, while a negative residual indicates an unfavorable site for
this species.

Correspondence analysis performs an ordination of these χij residuals to obtain orthogonal components that
explain a decreasing fraction of the total χ2 of the contingency table. The maximum number of components
is min(r − 1, c− 1) where r and c are the number of rows and columns of the matrix, respectively.

Whereas PCA makes a distinction between observations and variables, correspondence analysis is symmetrical;
it simultaneously orders the sites according to the species and vice versa. This influences the interpretation
of the results, as we will see in the following example.

If the PCA gives a good representation of the Euclidean distance between sites, the correspondence analysis
gives a good representation of the χ2 distance. Compared to other ordinations, it gives a greater weight to
rare species.

Example with R

The dune data frame included with the vegan package contains abundance data for 30 plant species at 20
sites.

Correspondence analysis can be performed with the cca function of vegan; the name of this function is due
to it also being the function for canonical correspondence analysis, which we will see later. Note that vegan
functions can be applied to other types of data, even though the result always refers to columns as species
and rows as sites.
data(dune)

ac_dune <- cca(dune)
# display = "reg" to avoid printing all the species and sites coordinates
summary(ac_dune, display = "reg")

##
## Call:
## cca(X = dune)
##
## Partitioning of scaled Chi-square:
## Inertia Proportion
## Total 2.115 1
## Unconstrained 2.115 1
##
## Eigenvalues, and their contribution to the scaled Chi-square
##
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## Importance of components:
## CA1 CA2 CA3 CA4 CA5 CA6 CA7
## Eigenvalue 0.5360 0.4001 0.2598 0.17598 0.14476 0.10791 0.09247
## Proportion Explained 0.2534 0.1892 0.1228 0.08319 0.06844 0.05102 0.04372
## Cumulative Proportion 0.2534 0.4426 0.5654 0.64858 0.71702 0.76804 0.81175
## CA8 CA9 CA10 CA11 CA12 CA13 CA14
## Eigenvalue 0.08091 0.07332 0.05630 0.04826 0.04125 0.03523 0.020529
## Proportion Explained 0.03825 0.03466 0.02661 0.02282 0.01950 0.01665 0.009705
## Cumulative Proportion 0.85000 0.88467 0.91128 0.93410 0.95360 0.97025 0.979955
## CA15 CA16 CA17 CA18 CA19
## Eigenvalue 0.014911 0.009074 0.007938 0.007002 0.003477
## Proportion Explained 0.007049 0.004290 0.003753 0.003310 0.001644
## Cumulative Proportion 0.987004 0.991293 0.995046 0.998356 1.000000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions

The fraction of the total variation explained by components 1 and 2 may seem small (44%), but we must
consider that we have reduced the dimensionality from 30 to 2 variables.

The plot function represents the species (in red) and the sites (in black) on the first two axes.
plot(ac_dune)
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In PCA, the variables were represented by vectors (arrows) and we interpreted the direction and length of
these vectors. Here, species and sites are points, and we can interpret their position as follows:
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1. Sites near each other host similar communities.
2. Species near each other are present at similar sites.
3. Species are located at the average position of sites where they are present, where each site is weighted

by the species’ abundance at that site. So for example, species Empenigr is only present at site 19,
whereas Airaprae is present at 17 and 19.

This third point corresponds to the default visualization in vegan. If we instead want each site to be at the
average position of species found there, we can specify the scaling = "sites argument in the plot function.

The coordinates of species and sites can be extracted with the scores (ac_dune) function.

We can see the importance given to rare species in this ordination, since they are at the edges of the graph.
In contrast, a species near the centre of the ordination is either present at many sites, or strongly associated
with sites also near the centre. We cannot distinguish those two cases without going back to the original data
matrix.

Deformation of gradients

In general, the abundance of a species is not a linear function of an environmental gradient (e.g., temperature);
the species reaches a maximum at an optimum value and its abundance decreases for larger or smaller values
of the environmental variable. Due to this non-linearity, a series of sites ordered according to an environmental
gradient may follow a curve on the ordination plot. This could be the case here, with a series of sites from the
middle right to the bottom left and then up. Methods have been proposed to rectify these curves (detrended
correspondence analysis or DCA), but these methods are not recommended, except in the rare cases where
we know in advance that the ordination is dominated by a single large gradient. A better solution would be
to superimpose the environmental gradient on the graph of ordination, as we will see later.

Principal coordinate analysis

Principal coordinate analysis (PCoA) is a more general method that includes PCA and CA as specific cases.
Whereas PCA aims to represent the true Euclidean distances between sites and CA is based on the χ2

distance, PCoA can work with different distance metrics.

We will use the pcoa function in the ape package to do a PCoA of the dune dataset, based on the Bray-Curis
distance (the correction argument is explained later).
library(ape)
dune_bray <- vegdist(dune, method = "bray")
pcoa_dune <- pcoa(dune_bray, correction = "lingoes")

The eigenvalues of the PCoA represent the part of the total distance between sites contained within each of
the axes. Those values can be found in the values table of the object produced by pcoa.
pcoa_dune$values

## Eigenvalues Corr_eig Rel_corr_eig Broken_stick Cum_corr_eig Cum_br_stick
## 1 1.716266188 1.81305186 0.295383959 0.194172671 0.2953840 0.1941727
## 2 1.022398050 1.11918372 0.182338369 0.138617115 0.4777223 0.3327898
## 3 0.461464091 0.55824976 0.090950529 0.110839338 0.5686729 0.4436291
## 4 0.382249161 0.47903483 0.078044764 0.092320819 0.6467176 0.5359499
## 5 0.279134546 0.37592022 0.061245243 0.078431930 0.7079629 0.6143819
## 6 0.236630925 0.33341660 0.054320517 0.067320819 0.7622834 0.6817027
## 7 0.169120371 0.26590604 0.043321640 0.058061560 0.8056050 0.7397643
## 8 0.096245175 0.19303085 0.031448750 0.050125052 0.8370538 0.7898893
## 9 0.074491756 0.17127743 0.027904665 0.043180608 0.8649584 0.8330699
## 10 0.061711999 0.15849767 0.025822576 0.037007768 0.8907810 0.8700777
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## 11 0.054940459 0.15172613 0.024719351 0.031452212 0.9155004 0.9015299
## 12 0.019174290 0.11595996 0.018892296 0.026401707 0.9343927 0.9279316
## 13 0.016118974 0.11290464 0.018394521 0.021772078 0.9527872 0.9497037
## 14 0.004000912 0.10078658 0.016420236 0.017498574 0.9692074 0.9672023
## 15 0.000000000 0.07036054 0.011463200 0.013530320 0.9806706 0.9807326
## 16 -0.026425126 0.05392868 0.008786106 0.009826616 0.9894567 0.9905592
## 17 -0.042856993 0.04205150 0.006851066 0.006354394 0.9963078 0.9969136
## 18 -0.054734175 0.02266261 0.003692212 0.003086420 1.0000000 1.0000000
## 19 -0.074123061 0.00000000 0.000000000 0.000000000 1.0000000 1.0000000
## 20 -0.096785671 0.00000000 0.000000000 0.000000000 1.0000000 1.0000000

In that table, we notice that the last eigenvalues are negative. This can happen for certain distance measures
like Bray-Curtis. The correction given as an argument in pcoa transforms the distances so that all values are
positive (2nd column, Corr_eig). The Rel_corr_eig column can then be interpreted as the proportion of
original distances between sites represented by that axis.

Let’s now look at the position of sites on the first two axes.
biplot(pcoa_dune)
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PCoA ordination

That ordination is similar to that of correspondance analysis seen earlier, but sites 17 and 19 are closer to the
others. Indeed, the Bray-Curtis distance gives less importance to rare species and sites with very few species.

By providing the original data matrix as a second argument in biplot, we can obtain arrows representing the
position of species, similar to a PCA.
biplot(pcoa_dune, dune)
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PCoA biplot
Response variables projected

as in PCA with scaling 1

We saw earlier in the class that certain distance measures are equivalent to the Euclidean distance in a
transformed space. For example, the Hellinger distance is a Euclidean distance applied to data following
a Hellinger transform. In that case, it is simpler to apply PCA to the missing data, which is equivalent to
PCoA for the corresponding distance measure.

Nonmetric multidimensional scaling

Another ordination method commonly applied in ecology is nonmetric multidimensional scaling (NMDS).
Like PCoA, NMDS is based on a distance matrix between sites as a starting point, but uses a very different
ordination technique.

The methods seen so far (PCA, CA, PCoA) perform a rotation in multivariate space so that the most
important portion of the differences between sites can be found in the first axes. NMDS requires the user to
specify how many axes to use (generally 2), then uses an iterative algorithm that places points randomly
in space, and gradually moves them so that the distance between points in the reduced space is maximally
related to their true distance in the full space. The difference between distances in the reduced space and the
true distances is represented by a stress measure, which the method tries to minimize.

Since the method has no restriction on the positioning of points in space, it can produce a 2D graphic that is
closer to the full distances between sites. Unlike other methods, NMDS does not include all axes, and does
not provide a measure of the proportion of the total distance represented by each axis. Also, it relies on a
heuristic algorithm that may not converge, or converge to different solutions based on the initial positions
chosen prior to the analysis.

The metaMDS function addresses the latter issue by performing repeated runs of the algorithm from random
initial configurations, in order to increase the chances of detecting the optimal result. The Bray-Curtis
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distance is often recommended for analyzing abundance data with this algorithm and is the default distance
choice for metaMDS.
md_dune <- metaMDS(dune, distance = "bray")

During the execution of the function, R indicates the stress for each run of the algorithm and indicates in
the end whether an optimal solution has been found. If the algorithm does not converge, you must repeat
metaMDS by specifying a number of tries (try argument) greater than 20.

The plot function displays the result of NMDS in two dimensions. After NMDS orders the sites, the position
of the species is determined according to the position of the sites where these species are found, similar to
correspondance analysis. We specify the argument type = "t" to display the names of sites and species
rather than points alone.
plot(md_dune, type = "t")
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The value of stress is 0.118 for this result. In general, a stress lower than 0.1 is excellent is a stress higher
than 0.2 is bad. You can also use the stressplot function to check the level of correspondence between
NMDS distances and the original distance matrix between sites.
stressplot(md_dune)
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Effect of predictors on a multivariate response

So far, we have seen how to represent the variation between ecological communities present at various sites.
This last section deals with methods for associating this variation with predictors measured for each site.

We will still use the dune data as an example, with the associated dune.env data frame that contains the
values of five variables characterizing the 20 sites.
data(dune.env)
head(dune.env)

## A1 Moisture Management Use Manure
## 1 2.8 1 SF Haypastu 4
## 2 3.5 1 BF Haypastu 2
## 3 4.3 2 SF Haypastu 4
## 4 4.2 2 SF Haypastu 4
## 5 6.3 1 HF Hayfield 2
## 6 4.3 1 HF Haypastu 2

This table contains a single numeric variable (A1, the thickness of the A1 soil horizon), two nominal categorical
variables (Management and Use) and two ordinal categorical variables (Moisture and Manure) .
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Multivariate analysis of variance

There are several multivariate versions of ANOVA. The adonis function of vegan estimates the fraction
of distances between sites explained by different predictors. For each independent variable, this method
calculates a F -statistic similar to the univariate ANOVA. However, the p-value of this statistic is not
based on a theoretical distribution, but rather by a permutation test: the function performs 999 random
permutations of the values of the independent variable and calculates the F -statistic for each permutation.
The resulting distribution represents the null hypothesis that the variable has no effect. This method is
known as PERMANOVA (for permutational multivariate analysis of variance).

The formula given to the adonis function resembles that of a linear model in R, except that the response is a
community matrix rather than a single variable. You can specify the distance measure to use; the default is
the Bray-Curtis distance.
adonis(dune ~ A1 + Moisture + Management + Use + Manure, dune.env)

##
## Call:
## adonis(formula = dune ~ A1 + Moisture + Management + Use + Manure, data = dune.env)
##
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## A1 1 0.7230 0.72295 5.2038 0.16817 0.003 **
## Moisture 3 1.1871 0.39569 2.8482 0.27613 0.006 **
## Management 3 0.9036 0.30121 2.1681 0.21019 0.036 *
## Use 2 0.0921 0.04606 0.3315 0.02143 0.982
## Manure 3 0.4208 0.14026 1.0096 0.09787 0.467
## Residuals 7 0.9725 0.13893 0.22621
## Total 19 4.2990 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Like the univariate ANOVA, this method considers the variables in the given order: Moisture gives the fraction
of the distance explained after taking into account the effect of A1, Management the fraction explained after
taking into account A1 and Moisture, etc.

In univariate ANOVA, we first verified that the variance was constant between the groups before comparing
the means. PERMANOVA does not assume equality of variances; however, a significant difference associated
with a variable may represent either a difference in the “average” community composition according to this
variable, or a difference in the variance of the composition. To interpret the results well, it may be useful to
visualize the relationship between the variables and the sites placed on an ordination, as we will see in the
next section.

Superposition of predictors to ordination axes

A second technique for determining the effect of explanatory variables on a multivariate response is to first
perform an ordination of the response and then correlate the variables to the ordination result.

If the principal components are orthogonal (which is the case for PCA, CA and PCoA, but not NMDS), a
separate regression of each component can be performed according to the predictors. Another option is to
simultaneously estimate the correlation between explanatory variables and each of the axes, which is done by
the envfit function of vegan.
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The envfit function requires two parameters, the result of an ordination and a data frame for the predictors.
Here, we consider the relation between the PCoA components of dune, the A1 soil thickness (A1 ) and the
type of management.

This time, we do not use PCoA from the ape package, but instead use the wcmdscale function from vegan,
so that the output is compatible with envfit. The function name is an abbreviation of “weighted classical
multidimensional scaling”, which is synonymous with a PCoA. The eig = TRUE argument tells the function
to save the eigenvalues, whereas add = TRUE performs the same correction as the “lingoes” method in pcoa.
pcoa_dune2 <- wcmdscale(dune_bray, eig = TRUE, add = TRUE)
envf <- envfit(pcoa_dune2, select(dune.env, A1, Management))
envf

##
## ***VECTORS
##
## Dim1 Dim2 r2 Pr(>r)
## A1 0.98847 0.15139 0.3845 0.013 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
##
## ***FACTORS:
##
## Centroids:
## Dim1 Dim2
## ManagementBF -0.2769 0.0034
## ManagementHF -0.1388 -0.0651
## ManagementNM 0.1873 0.2730
## ManagementSF 0.0668 -0.2204
##
## Goodness of fit:
## r2 Pr(>r)
## Management 0.4513 0.003 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999

For the numeric variable A1, the result indicates the magnitude and direction of the effect of an increase of
this variable on the two PCoA axes (hence a vector), as well as a r2 value giving the portion of the variance
explained by this correlation. For a categorical variable such as Management, the result indicates the average
position (centroid) on the two axes of the sites corresponding to each category.

The p-values for the effect of each variable in envfit are determined by permutation test, as in PERMANOVA.
The p-values and r2 are different in each case, because PERMANOVA evaluated the effect of the variables
on the total multidimensional variation, while envfit result measures the effect on the ordination in two
dimensions.

If you draw the ordination graph first, you can add the vector A1 and the centroids for each management
type by applying the plot function to the envfit result.
plot(pcoa_dune2)
plot(envf)
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If more than one numeric variable was included, the length of the vectors would be representative of the
importance of the effect of each variable, as measured by the r2.

With envfit, we can overlay both the position of species and environmental variables, although that makes
the graph more difficult to read.
plot(pcoa_dune2)
plot(envfit(pcoa_dune2, dune), col = "red") # Add species
plot(envf)
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The envfit function attempts to identify a linear correlation between a numeric variable and the ordination
axes. To represent a nonlinear environmental gradient like a two-dimensional surface, we can use the ordisurf
function. The estimated surface is represented by contour lines (like in a topographic map) on the axes of
ordination. In the following example, we show the contour lines for the A1 soil thickness on the two PCoA
axes, and then superimpose the vector obtained with envfit.
ords <- ordisurf(pcoa_dune2, dune.env$A1)

plot(ords)
plot(envf)
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Puisque les lignes de contour sont parallèles et également espacées, l’effet d’A1 semble effectivement être
linéaire dans cette représentation.

Constrained ordination

The ordination methods we have seen so far are of the “unconstrained” type, that is, they structure the
variation in the multivariate response without reference to explanatory variables. In constrained ordination,
the choice of axes is based on the part of the answer explained by the given predictors. These methods
include redundancy analysis and canonical correspondence analysis.

Consider a Y response matrix containing n observations of p variables. Suppose we separately perform a
linear regression for each of the p variables according to the same set of predictors x1, x2, etc. For example,
the regression of the variable j gives a fitted value ŷij for each observation i of this variable. We can then
combine the fitted values of each regression into a matrix Ŷ .


ŷ11 ŷ12 ... ŷ1p
ŷ21 ŷ22 ... ŷ2p
... ... ... ...
ŷn1 ... ... ŷnp


Redundancy analysis (RDA) is equivalent to a principal component analysis performed not on the original
multivariate response Y , but rather on Ŷ , which is the part of the response explained by the given predictors.

To perform redundancy analysis on the dune data, we first perform a Hellinger transformation, as seen in the
first section of this class, then we call therda function to model the composition based on variables A1 and
Management. As in adonis, the multivariate response data appears to the left of the formula.
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dune_hel <- decostand(dune, method = "hellinger")
rda_dune <- rda(dune_hel ~ A1 + Management, dune.env)
rda_dune

## Call: rda(formula = dune_hel ~ A1 + Management, data = dune.env)
##
## Inertia Proportion Rank
## Total 0.5559 1.0000
## Constrained 0.2144 0.3856 4
## Unconstrained 0.3415 0.6144 15
## Inertia is variance
##
## Eigenvalues for constrained axes:
## RDA1 RDA2 RDA3 RDA4
## 0.09737 0.07311 0.02666 0.01723
##
## Eigenvalues for unconstrained axes:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
## 0.09850 0.05596 0.04252 0.03909 0.02511 0.01979 0.01577 0.01340 0.00947 0.00791
## PC11 PC12 PC13 PC14 PC15
## 0.00584 0.00305 0.00274 0.00170 0.00067

The linear regression carried out in the first step of the RDA has 4 predictors here (1 for A1 and 3 for the
four-level factor Management). In this case, since the matrix Ŷ is a linear combination of the predictors, it
can only have 4 principal components. The result of the RDA names these 4 components “constrained axes”
(RDA1 to RDA4). RDA also performs a separate PCA for regression residuals (Y - Ŷ ); that PCA results in
15 unconstrained axes for the 15 residual degrees of freedom.

The graph of a RDA is called a triplot because it represents observations (sites), response variables (species)
and predictors (environmental conditions). Note that since RDA is based on PCA, species should be
represented by vectors here (like the A1 numerical predictor), but the arrows are omitted by vegan to avoid
crowding the graph; the species name is placed where the end of the arrow would be.
plot(rda_dune)
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The coordinates of the sites and species on the first two axes of the RDA can be obtained by calling the
scores(rda_dune) function.

For comparison purposes, here is the biplot of the unconstrained ordination with the estimate of predictor
effects obtained by envfit. Note that the rda function called with no predictor variables performs a PCA.
acp_dune <- rda(dune_hel)
acp_envf <- envfit(acp_dune, select(dune.env, A1, Management))
plot(acp_dune)
plot(acp_envf)
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What is the difference between these two approaches?

• With unconstrained ordination (PCA or CA), we summarize the variation of the multivariate response
in a few axes, then we estimate the effect of the predictors on these axes. This approach is more
parsimonious but runs the risk of “losing” the effect of a predictor if it is not related primarily to the
first few principal components.

• With constrained ordination (RDA or CCA), we first perform the regression in the multivariate space,
then summarize the predictions of this regression in a few axes. Since this approach performs as many
univariate regressions as there are columns in the multivariate response, it is more likely to detect an
effect due only to chance (overfitting).

If redundancy analysis is the combination of a regression and a PCA, canonical correspondence analysis
(CCA) is the combination of a regression and a correspondence analysis. Like correspondence analysis, CCA
is based on the χij standardized residuals of a contingency table. A regression is applied to these residuals
according to the predictors, then an ordination is applied to the fitted values estimated by this regression.
Here is an example with the cca function of vegan:
cca_dune <- cca(dune ~ A1 + Management, dune.env)
cca_dune

## Call: cca(formula = dune ~ A1 + Management, data = dune.env)
##
## Inertia Proportion Rank
## Total 2.1153 1.0000
## Constrained 0.7798 0.3686 4
## Unconstrained 1.3355 0.6314 15
## Inertia is scaled Chi-square

19



##
## Eigenvalues for constrained axes:
## CCA1 CCA2 CCA3 CCA4
## 0.3187 0.2372 0.1322 0.0917
##
## Eigenvalues for unconstrained axes:
## CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11
## 0.3620 0.2029 0.1527 0.1345 0.1110 0.0800 0.0767 0.0553 0.0444 0.0415 0.0317
## CA12 CA13 CA14 CA15
## 0.0178 0.0116 0.0087 0.0047

Here is the triplot corresponding to this analysis:
plot(cca_dune)
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Summary

• The vegan package in R contains several tools for multivariate analysis of ecological community data.
These data usually take the form of a matrix indicating the abundance or presence of species at each of
the sites studied.

• Euclidean distance is not appropriate for ecological community data. We have presented in this class
several distances designed for abundance data (Bray-Curtis, Hellinger, χ2) or presence-absence data
(Jaccard, Sorenson).

• Correspondence analysis (CA) is a type of ordination similar to principal component analysis, but
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adapted to contingency tables, including abundance or presence data. In an ecological context, it
emphasizes the rare species.

• Principal coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS) are ordination
methods based on a matrix of distances between sites. PCoA performs a linear transformation of the
matrix to produce principal axes (similar to PCA), whereas NMDS uses an algorithm that moves the
points in a number of dimensions chosen in advance to make their distances as close as possible at the
real distance between them.

• The envfit function makes it possible to simultaneously estimate the effect of predictors on the main
ordination axes.

• In constrained ordination, a regression is performed on the multivariate data and ordination is performed
on the part of the response explained by the predictors. Redundancy analysis is a constrained ordination
based on PCA, whereas canonical correspondance analysis is based on CA.
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