
Course synthesis
Sampling and experiment design

Sampling

• Simple random sampling: each individual has the same probability of being sampled
• Systematic sampling: regularly-spaced samples from a random origin
• Stratified sampling: division of population into strata, random sampling by stratum
• Cluster sampling: sample groups of individuals, take either all the individuals of a group, or a simple

random sample by group (multistage)

Experimental design

• Control group
• Random assignment of individuals to treatments
• Control of variation using blocks
• Split plots: second factor varies within replicates of the first factor

Structure of a statistical test

Examples
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One-sample t-test (n individuals)
One-factor ANOVA (m groups of n
individuals)

Null
hypothesis

The mean x̄ equals µ Same mean in each of the m groups

Statistic t = (x̄− µ)/(s/
√
n) F = MSA/MSE

Distribution t with n− 1 degrees of freedom F with m(n− 1) and (m− 1)
degrees of freedom

Key points for hypothesis testing

• The significance level is the probability of rejecting the null hypothesis when it is true.

• You must choose a test and a significance level before analyzing the results.

• If several tests are performed in an experiment, the probability of mistakenly rejecting one of the null
hypotheses increases (multiple comparison problem).

• The power of a test is the probability of rejecting the null hypothesis if it is false. The smaller the effect
to be detected compared to the variance of the response (low signal-to-noise ratio), the higher n must
be to have the same power.

• With a sufficiently large n, even a very small effect will be judged statistically significant; it does not
mean that the effect is important.

Parameter estimation

• Bias: systematic difference between the estimate of a parameter and its exact value.

• Standard error: standard deviation of the estimate of a parameter due to limited sampling; decreases
when n increases.

– Different from the standard deviation of the response: measures the variability between individuals,
does not depend on n.

• Confidence interval: In X% of the possible samples, the X% confidence interval of a parameter estimate
contains the true value of this parameter.

• Relationship between confidence interval and hypothesis testing: the hypothesis θ = θ0 can be rejected
at a threshold α if the 100%(1− alpha) confidence interval of θ̂ does not include θ0.
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Test differences between groups

Assumptions of the ANOVA

• Independence: The observations are independent.
• Normality: The response follows a normal distribution in each group.
• Homoscedasticity: The variance is the same in each group.

ANOVA tolerates moderate deviations from normality, so that assumption is less critical than the other two.

With only 2 groups, the t-test allows for unequal variances.

3



Regression models

Models in gray not seen in this course.

Assumptions of the linear regression model

1. Linear and additive effect of predictors on response
• Otherwise: transform the response and / or predictors, include interactions, generalized additive

models (GAM)
2. Independence of residuals

• Otherwise: mixed models (grouped data), temporal or spatial autocorrelation models
3. Uniformity of the variance (homoscedasticity)

• Otherwise: transform the response, weighted linear regression
4. Normality

• Otherwise: transform the response (only if very far from normality)

Model names in italics not seen in this course.

Interpreting regression coefficients

Linear regression, no interactions

y ∼ w + x+ z

y is the numerical response, w and x are numerical predictors, z is a factor with treatment coding (default in
R) and three levels: A (reference), B, and C.

Estimated coefficients:

• (Intercept): Mean value of the response when all predictors are at their reference level (0 for numerical
predictors).

• w: Effect on y of a unit increase of w if x and z remain constant.
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• x: Effect on y of a unit increase of x if w and z remain constant.
• zB: Difference of y between levels B and A of z, if w and x remain constant.
• zC : Difference of y between levels C and A of z, if w and x remain constant.

Interaction of a numerical predictor and a factor

y ∼ x ∗ z

Estimated coefficients:

• (Intercept): Same interpretation.
• x: Effect on y of a unit increase of x if z = A.
• zB: Difference of y between levels B and A of z if x = 0.
• zC : Difference of y between levels C and A of z if x = 0.
• x:zB: Effect on y of a unit increase of x if z = B.
• x:zC : Effect on y of a unit increase of x if z = C.

Interaction of two numerical predictors

y ∼ w ∗ x

Estimated coefficients:

• (Intercept): Same interpretation.
• w: Effect on y of a unit increase of w if x = 0.
• x: Effect on y of a unit increase of x if w = 0.
• w:x: Effect on the slope of y vs. x of a unit increase in w, OR effect on the slope of y vs. w of a unit

increase in x (two equivalent interpretations).

Generalized linear models

• In these models, the mean of y is not equal to the linear combination of predictors η, but to a
transformation of η according to a link function.

• The interpretation of the parameters above indicates the effect on η. To obtain the effect on the mean
of y, you must apply the inverse of the link function.

– Inverse of the logit link: y = 1/(1 + exp(−η))
– Inverse of the log link: y = exp(η)

Standardization of numerical predictors

• Standardize a predictor by subtracting the mean and dividing by the standard deviation.

xnorm = x− µx

σx

- Since xnorm = 0 corresponds to the mean of x, it is easier to interpret the intercept in all cases, and the
coefficients in the case of a model with interactions.

• Since a unit increase of xnorm corresponds to increasing x by one standard deviation, the magnitude
of the coefficient gives an idea of the importance of the effect of this predictor. We can thus compare
predictors with different original scales.
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Model selection

• Choice between models of different complexities: compromise between underfitting and overfitting.

• Underfitting: important effects not included in the model.

• Overfitting: the model reproduces very well the data used to fit it, but performs worse on new data.

• In the absence of independent data to evaluate the predictive power of different models, we can estimate
it with the AIC (and its variants).

Key points for model selection

• Compare models based on the same response variable and the same observations.

• The best model may not be good: check the fit.

• If several models are plausible, the weighted average of their predictions is often better than the
predictions of the best model.

Collinearity

• Problem where two or more predictors are strongly correlated.

• Different options:

– Choose a priori which predictors to eliminate, according to our knowledge of the system.
– Use AIC to choose between different models that include non-collinear subsets of predictors.
– Perform an ordination of the predictors to obtain uncorrelated axes, then perform a regression the

response according to these new variables.
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