
Chi-squared test and ANOVA

September 27, 2021

At the last class, we used the t-test to determine if the mean value of a variable differed between two groups.
The analysis of variance (ANOVA), which we will start discussing today, makes it possible to extend this
comparison to several groups.

Before discussing ANOVA, we will present another test, the chi-squared test, which aims to detect an
association between two categorical variables.

Objectives

• Use the chi-squared test to compare the frequencies of a categorical variable to a reference distribution,
or to test the association between two categorical variables in a contingency table.

• Understand the principle of the analysis of variance and perform a one-way ANOVA.

• Determine the significant differences between treatments using Tukey’s range test.

Compare the frequencies of a variable to a reference distribution

Example: To check if a die is balanced, we compile the result of 100 throws. The following table shows the
number of times each number was obtained (its frequency f).

i fi

1 12
2 17
3 16
4 18
5 11
6 26
Total 100

Our null hypothesis is that the die is balanced, so there is an equal probability of getting each value (pi = 1/6
for i from 1 to 6). If we multiply these probabilities by the total number of throws, we obtain the expected
frequency (f̂i) for each number.

i fi pi f̂i

1 12 1/6 16.7
2 17 1/6 16.7
3 16 1/6 16.7
4 18 1/6 16.7
5 11 1/6 16.7
6 26 1/6 16.7
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i fi pi f̂i

Total 100

Pearson’s chi-squared test

For a variable with k categories, the value of the chi-squared (χ2) statistic is calculated as:

χ2 =
k∑

i=1

(fi − f̂i)2

f̂i

The chi-squared statistic thus measures the sum of the deviations between the observed and expected
frequencies (normalized by the expected value). When the f̂i for each category are large enough (typically, 5
or more), this statistic roughly follows a χ2

k−1 distribution, where $k - 1 $is the number degrees of freedom.

Reminder : The degrees of freedom correspond to the number of independent data used in the
calculation of a statistic. Here, the χ2 is calculated from the deviations between observed and
expected frequencies for k categories. However, since the sum of the deviations must equal 0
(because the total of fi and f̂i is the same) there are k − 1 independent deviations.

k∑
i=1

fi =
k∑

i=1
f̂i

, thus
k∑

i=1
(fi − f̂i) = 0

Here is the distribution of χ2
k for different values of k:
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In R, the pchisq(q, df) function gives the probability of getting a value less than or equal to q for a
chi-squared distribution with df degrees of freedom. Let’s calculate this probability for our example.
# Data
x <- c(12, 17, 16, 18, 11, 26)
n <- sum(x) # total

# Theoretical probabilities
p <- rep(1/6, 6)

# Calculate chi-squared statistic
khi2 <- sum((x - n*p)^2 / (n*p))
khi2

## [1] 8.6
pchisq(khi2, df = 5)

## [1] 0.8738776

Question: What is the p-value for this test? Is it a one-sided or two-sided test?

This is a one-sided test, since if the theoretical model was a bad fit, the sum of the deviations would be larger
than expected. The p-value is 1 - pchisq(chi2, df = 5), which is about 0.126.

Rather than manually calculating the statistic, we can use the chisq.test function.
chisq.test(x, p = p)

##
## Chi-squared test for given probabilities
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##
## data: x
## X-squared = 8.6, df = 5, p-value = 0.1261

Test of association between two categorical variables

Contingency table

Often, we do not have a reference distribution for a categorical variable, but we want to check if its distribution
depends on the value of another categorical variable, in other words, if the two variables are associated.

For example, suppose the number of dead and live trees of three coniferous species (ABBA: balsam fir, PIGL:
white spruce, PIMA: black spruce) were counted in a plot following a spruce budworm outbreak.
# rbind creates a matrix by binding vectors as rows
survie <- rbind(c(29, 11, 12), c(31, 29, 38))
rownames(survie) <- c("dead", "alive")
colnames(survie) <- c("ABBA", "PIGL", "PIMA")
survie

## ABBA PIGL PIMA
## dead 29 11 12
## alive 31 29 38

This type of matrix is called a contingency table.

In our example, the two variables (survival and species) are associated if the mortality rate depends on the
species. The null hypothesis represents the absence of association, that is, survival is independent of the
species.

Chi-squared test for two variables

As in the previous section, we will calculate the χ2 from the deviations between the observed (fij) and
expected (f̂ij) frequencies.

χ2 =
r∑

i=1

c∑
j=1

(fij − f̂ij)2

f̂ij

Here, r and c refer to the number of rows and columns in the table, respectively.

How to determine the expected frequencies f̂ij? Let’s first calculate the totals in each row and column, as
well as the grand total.

ABBA PIGL PIMA Total
dead 29 11 12 52
alive 31 29 38 98
Total 60 40 50 150

Let Ni be the total of the row i, Nj the total of the column j and N be the grand total. We estimate the
probability of each category by the proportion of the grand total included in this category: p̂i = Ni/N and
p̂j = Nj/N .

The joint probability of two independent variables is the product of the probabilities of the variables taken
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separately, e.g.: (Prob. that the tree is a live fir) = (Prob. that the tree is a fir) x (Prob. that the tree is
alive). Thus, the expected frequencies according to the null hypothesis are calculated as follows.

f̂ij = Np̂ip̂j = NiNj

N

If the null hypothesis is correct, then the χ2 statistic follows a distribution with (r − 1) × (c− 1) degrees of
freedom. In our example, df = 2. Indeed, since the expected frequencies are based on the totals of each row
and each column, the sum of the deviations in each row and each column must be zero.

If we choose a threshold α = 0.05 and then apply the chisq.test function to that matrix, we get a p-value
of 0.01, meaning there is a significant association between the two variables.
chisq.test(survie)

##
## Pearson's Chi-squared test
##
## data: survie
## X-squared = 8.3669, df = 2, p-value = 0.01525

To specify the association, we can assign the result of the test to a variable khi2 and inspect the expected
frequencies (khi2$expected) and the residuals (khi2$residuals).
khi2 <- chisq.test(survie)
khi2$expected

## ABBA PIGL PIMA
## dead 20.8 13.86667 17.33333
## alive 39.2 26.13333 32.66667
khi2$residuals

## ABBA PIGL PIMA
## dead 1.797969 -0.7698235 -1.2810252
## alive -1.309697 0.5607636 0.9331389

The residuals are the standardized deviations:

fij − f̂ij√
f̂ij

The sum of the squared values of these deviations are equal to χ2.

How can we interpret this matrix of residuals? Since there is an excess of dead fir (positive residual), the fir
mortality rate is higher than predicted by the null hypothesis, whereas it is lower than expected for both
spruces.

However, the rejection of the null hypothesis (independence between mortality and species) in the table does
not tell us between which species the mortality rate varies significantly. Later this semester, we will see how
a logistic regression estimates the probability of a binary result (e.g., survival) based on a categorical or
continuous predictor.

Notes on using the chi-squared test

• The chi-squared test must always be done on the frequencies (number of observations), not on the
proportions. Without knowing the size of the sample, the proportions themselves do not tell us if a
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deviation is significant. For example, if two categories should be in equal proportions (50% / 50%),
frequencies of 60 and 40 may represent a significant deviation, but not frequencies of 6 and 4.

• Since the chi-squared test approximates discrete data by a continuous distribution, it becomes less
accurate as the sample size decreases. The test is therefore not recommended if one of the expected
frequencies (f̂ij) is less than 5. In this case, we can use Fisher’s exact test (fisher.test function in
R), which calculates the exact probabilities of different contingency tables, assuming that the row and
column totals are fixed.

tab <- matrix(c(4, 6, 8, 2), nrow = 2)
tab

## [,1] [,2]
## [1,] 4 8
## [2,] 6 2
chisq.test(tab)

## Warning in chisq.test(tab): Chi-squared approximation may be incorrect

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: tab
## X-squared = 1.875, df = 1, p-value = 0.1709
fisher.test(tab)

##
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 0.1698
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.01252647 1.65925396
## sample estimates:
## odds ratio
## 0.1841181

Analysis of variance (ANOVA)

Suppose we want to compare the mean of a variable between several (>2) groups. We could compare the
groups in pairs with t-tests (for example, A-B, B-C, and A-C for three groups), but as we saw in the previous
class, performing multiple tests increases the probability of making a type I error.

For a sample divided into several groups, the analysis of variance (ANOVA) compares the variation between
observations within each group to the variation between the groups. It thus makes it possible to globally
test the null hypothesis according to which observations in each group come from populations with the same
mean.

For example, let’s take the penguins dataset from the palmerpenguins package, which contains measurements
taken on different penguin species in the Palmer Archipelago of Antarctica. We select a random sample of
12 individuals per species with the group_by and sample_n functions of dplyr. The graph below shows the
variation in flipper length by species for that sample.
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library(palmerpenguins)
penguins_ech <- penguins %>%

filter(!is.na(flipper_length_mm)) %>%
group_by(species) %>%
sample_n(12)

ggplot(penguins_ech, aes(x = species, y = flipper_length_mm)) +
geom_boxplot()
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Here, we have a numeric variable that varies based on a categorical variable (or factor) with three categories.
A one-way ANOVA compares groups along one categorical variable.

One-Way ANOVA Model

Suppose we measure the variable y for l groups each including n observations. The difference between an
observation k of the group i (yik) and the (theoretical) mean of that group (µi) is the residual εik.

yik = µi + εik

In the ANOVA model, we assume that residuals follow a normal distribution with mean 0 and a fixed standard
deviation.

εik ∼ N(0, σ)

The null hypothesis is that µi is the same for all groups. We can also represent the same model based on the
grand mean, µ, and the deviation αi between the mean of group i and µ.
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yik = µ+ αi + εik

Sum of squared deviations

If ȳ is the grand mean of the observed y and ȳi is the mean of observations in group i, then we can prove the
following relationship between sums of squared deviations.

l∑
i=1

n∑
k=i

(yik − ȳ)2 =
l∑

i=1

n∑
k=i

(yik − ȳi)2 +
l∑

i=1

n∑
k=i

(ȳi − ȳ)2

Since the last term doesn’t depend on k, we can re-write the equation as:

l∑
i=1

n∑
k=i

(yik − ȳ)2 =
l∑

i=1

n∑
k=i

(yik − ȳi)2 +
l∑

i=1
n(ȳi − ȳ)2

The term on the left is the total sum of squares (SST ), the first term on the right is error (residual) sum of
squares (SSE) and the second term on the right is the sum of squares between groups of factor A (SSA, the
only factor in this case).

We thus obtain the equation SST = SSE + SSA, which decomposes the total sum of squares into two
components: one due to the differences observed within each group (SSE) and the other due to the differences
observed between groups (SSA).

Analysis of variance table

From the sums of squared deviations seen above, the mean squared deviations can be calculated by dividing
each sum by the appropriate number of degrees of freedom.

• For the deviations from the grand mean, there are nl − 1 degrees of freedom; since the sum of the
deviations is zero, the last one is not independent from the others.

• For the residuals, there are (n− 1)l degrees of freedom, since there are n− 1 independent deviations
per group.

• For the differences between the group means and the grand mean, there are l − 1 degrees of freedom.

Notice that the sum of the degrees of freedom is the same on both sides of the equation: nl−1 = (n−1)l+(l−1).

The sum of squared deviations, degrees of freedom and mean squared deviations can be presented in an
ANOVA table.

ComponentSum of squares (SS) Degrees of freedom (df) Mean square (MS)

Factor
A

SSA =
∑l

i=1 n(ȳi − ȳ)2 l − 1 MSA = SSA
l−1

ResidualSSE =
∑l

i=1
∑n

k=i(yik − ȳi)2 (n− 1)l MSE = SSE
(n−1)l

Total SST =
∑l

i=1
∑n

k=i(yik − ȳ)2 nl − 1

Null hypothesis test

Recall the model for a one-way ANOVA:
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yik = µ+ αi + εik

εik ∼ N(0, σ)

The mean of squared residuals (MSE) is an estimator of the variance in that model (σ2).

If the null hypothesis is correct and there are no systematic differences between groups (that is, all αi are
equal to 0 in the model), then the mean of squared group differences (MSA) is also an estimator of σ2. Indeed,
according to the null hypothesis, the different groups are independent samples of the same population. In
this case, the term MSA corresponds to the variance of ȳi multiplied by n (the number of observations per
group). The variance of a mean of n observations is precisely equal to σ2/n, where σ2 is the variance of the
individual observations.

If MSA and MSE are two estimators of the same variance under the null hypothesis, then their ratio
F = MSA/MSE follows the F distribution. This distribution has two parameters (d1 and d2) corresponding
to the degrees of freedom of MSA and MSE.

Conversely, if the null hypothesis is false, the value of MSA is expected to be higher than MSE, since
systematic differences between groups will be added to the random variations in sampling. It is therefore a
one-sided test: the p-value is the probability of a F ratio equal to or greater than the one observed in the
data.

Assumptions of the ANOVA model

For the model on which the ANOVA is based to be valid, the residuals must be (1) independent between
observations and follow (2) a normal distribution with (3) the same variance σ2 in each group.

• The independence of the residuals requires, among other things, that the unmeasured factors that
influence the response are distributed in a similar way for each group. For an experimental design, the
random assignment of treatments helps to ensure this independence.
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• Like the t-test, the ANOVA is robust to weak to moderate deviations from the normal distribution.

• Unlike the t-test, the equality of the group variances (homoscedasticity) is essential for the ANOVA.
If this assumption is not met, we must transform the data or resort to a more complex model, as we
will see later.

The calculations presented above apply only to a balanced sample, that is, where the number of observations
is the same in each group. For today’s class, we will limit ourselves to balanced samples. In order to perform
an unbalanced ANOVA in R, we must use linear regression methods that we will see in future courses.

Examples of one-way ANOVA

With the aov function in R, we perform an ANOVA of the flipper length by penguin species, from the sample
of the penguins data frame chosen at the beginning of this section.
anova1 <- aov(flipper_length_mm ~ species, data = penguins_ech)
summary(anova1)

## Df Sum Sq Mean Sq F value Pr(>F)
## species 2 5848 2924.1 42.24 7.97e-10 ***
## Residuals 33 2285 69.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The aov function requires a description of the model in the response ~ predictor format, as well as the
name of the data frame containing these variables (data argument). By applying the summary function to
the result of an ANOVA, we obtain the ANOVA table as presented above, along with the value of the F
statistic and its p-value (Pr(>F)). With a threshold of 0.05, the null hypothesis that species have the same
mean flipper length would be rejected.

To verify that our data conforms to the assumptions of the model, we must consult the diagnostic plots,
obtained by applying the plot function to the result.
plot(anova1)
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The first two graphs are the most important here. The Residuals vs. Fitted plot shows the value of the
residuals according to the estimated mean for each group; if the model is valid, there should be no visible
trend and the residuals of the different groups should have a similar variance around zero, which is the case
here. The second graph is a quantile-quantile plot to check if the residuals approximately follow a normal
distribution.

To display the group means, we must call the coef function (for coefficients).
coef(anova1)

## (Intercept) speciesChinstrap speciesGentoo
## 190.416667 3.416667 28.583333

By default, the (Intercept) is the mean of the first group (here, the species Adelie), while the other
coefficients indicate the difference between the other groups and that first mean. The mean for species
Chinstrap is 190.4 + 3.4 = 193.8, while the mean for species Gentoo is 190.4 + 28.6 = 219.0. The result does
not tell us which of these differences are significant.

If there are only two groups, the ANOVA is equivalent to a t-test between two samples with equal variance.
library(dplyr)
penguins_2sp <- filter(penguins_ech, species != "Gentoo")
anova2 <- aov(flipper_length_mm ~ species, data = penguins_2sp)
summary(anova2)

## Df Sum Sq Mean Sq F value Pr(>F)
## species 1 70 70.04 0.881 0.358
## Residuals 22 1749 79.48
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coef(anova2)

## (Intercept) speciesChinstrap
## 190.416667 3.416667
t.test(flipper_length_mm ~ species, data = penguins_2sp, var.equal = TRUE)

##
## Two Sample t-test
##
## data: flipper_length_mm by species
## t = -0.93874, df = 22, p-value = 0.3581
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -10.964779 4.131446
## sample estimates:
## mean in group Adelie mean in group Chinstrap
## 190.4167 193.8333

The p-value and the estimated mean by species are the same for both tests.

Now, let’s consider the InsectSprays data frame that describes the number of insects (count) on plots
treated with different insecticides (spray).
ggplot(InsectSprays, aes(x = spray, y = count)) +

geom_boxplot()
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Before looking at the ANOVA results, we inspect the first two diagnostic plots.
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anova3 <- aov(count ~ spray, InsectSprays)
plot(anova3, which = 1:2)
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The graph of residuals vs. fitted values shows that the variance of the residuals is higher for the groups with
higher means, which contradicts the assumption of equal variance. When this happens, the distribution of
residuals also departs from normal, as can be seen in the quantile-quantile plot.

Square root transformation

An increase of the variance for groups with a higher mean occurs frequently when dealing with count data.
For this type of data, taking the square root (sqrt) of the original variable can make the variances more
homogeneous. Note that a logarithmic transformation is not possible when the data includes 0s.
anova3_racine <- aov(sqrt(count) ~ spray, InsectSprays)
plot(anova3_racine, which = 1:2)
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summary(anova3_racine)

## Df Sum Sq Mean Sq F value Pr(>F)
## spray 5 88.44 17.688 44.8 <2e-16 ***
## Residuals 66 26.06 0.395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Instead of transforming the response variable (the number of insects), another option would be to choose a
model that is not based on a normal distribution of the residuals. This is the approach taken by generalized
linear models, which we will study later in the semester.

Multiple comparisons between groups

As we saw above, the rejection of the null hypothesis in ANOVA indicates that the observed differences would
be unlikely if all groups had the same mean, but does not tell us which groups have significantly different
means.

Tukey’s range test is designed for this scenario. The test compares the groups in pairs with a statistic based
on the t distribution, but which takes into account the multiple comparisons to ensure that the overall
probability of Type I error remains below the desired threshold (usually 5%).

This test is implemented in R by the TukeyHSD function (for Honest Significant Difference). For example, we
apply the Tukey test to the result of our first ANOVA, on the variation of the flipper length between penguin
species.
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anova1 <- aov(flipper_length_mm ~ species, data = penguins_ech)
tukey1 <- TukeyHSD(anova1)
tukey1

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = flipper_length_mm ~ species, data = penguins_ech)
##
## $species
## diff lwr upr p adj
## Chinstrap-Adelie 3.416667 -4.91840 11.75173 0.5784484
## Gentoo-Adelie 28.583333 20.24827 36.91840 0.0000000
## Gentoo-Chinstrap 25.166667 16.83160 33.50173 0.0000000

There seems to be a significant difference between Gentoo and the two other species.

The plot function produces a graph of the confidence intervals for Tukey’s range test.
plot(tukey1)
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Differences in mean levels of species

Since this method targets a 5% probability of Type I error across all comparisons, each of the individual
comparisons must have a α < 0.05. In this case, the probability of Type II error (not detecting a significant
difference) increases. We can therefore control the type I error rate in a multiple comparison problem, but at
the cost of decreasing the power of the test when the number of comparisons to be made increases. Since
ANOVA has greater power than multiple comparisons, it is even possible that none of the differences between
two groups are significant, even if the ANOVA null hypothesis was rejected.
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Summary

Chi-squared test

• A contingency table is a cross-tabulation of the number of observations (frequencies) according to two
categorical variables.

• The chi-squared test is used to compare the frequencies of a categorical variable to a reference distribution,
or to check the independence of two categorical variables in a contingency table.

• When the expected frequencies are very low (<5), the approximation the of chi-squared test must be
replaced by a test that computes the exact probabilities of the contingency tables, like Fisher’s exact
test.

ANOVA

• The analysis of variance aims to determine if samples from different groups (e.g. treatments) are
distributed with the same mean.

• It assumes that the residuals in each group are independent and follow a normal distribution with the
same variance.

• If the ANOVA null hypothesis is rejected, Tukey’s range test can be used to identify significant differences
between groups.

Comparison with other models

More generally, we could say that the t-test and ANOVA deal with the effect of categorical predictors
(e.g. different treatments) on a numerical response. In contrast, the chi-squared test aims to detect an
association between two categorical variables; depending on the interpretation, one or the other can be
considered the response.

Later this semester, we will focus on regression models. These are broader in scope because they link a
response variable to categorical and numerical predictors. In particular, we will see that the t-test and
ANOVA are examples of linear regression models.

Categorical response Numerical response
Categorical predictor Chi-squared test t-test (2 categories) or

ANOVA (more than 2
categories)

Categorical or numerical
predictor

Logistic regression Linear regression

16


	Objectives
	Compare the frequencies of a variable to a reference distribution
	Pearson's chi-squared test

	Test of association between two categorical variables
	Contingency table
	Chi-squared test for two variables
	Notes on using the chi-squared test

	Analysis of variance (ANOVA)
	One-Way ANOVA Model
	Sum of squared deviations
	Analysis of variance table
	Null hypothesis test
	Assumptions of the ANOVA model

	Examples of one-way ANOVA
	Square root transformation

	Multiple comparisons between groups
	Summary
	Chi-squared test
	ANOVA
	Comparison with other models


