
Maximum likelihood - Solutions

Data

The dataset thermal_range.csv is the result of an experiment to determine the effect of temperature (temp)
on the number of eggs (num_eggs) produced by a species of mosquito. Three replicates were measured for
temperature values between 10 and 32 degrees Celsius.
therm <- read.csv("../donnees/thermal_range.csv")
head(therm)

## temp num_eggs
## 1 10 1
## 2 10 1
## 3 10 2
## 4 12 4
## 5 12 4
## 6 12 6

1. Poisson model

We assume that the mean number of eggs produced follows a Gaussian function centered on an optimal
temperature. (This function has the same shape as a normal distribution, but it is not a probability.)

N = No exp
(

− (T − To)2

σ2
T

)
In this equation, N is the mean number of eggs produced at T , To is the optimum temperature, No is the
number of eggs produced at To and σT represents the tolerance (the larger σT is, the slower the production
decreases around the optimum).

a) Produce a graph of num_eggs vs. temp for this dataset. Using this graph, answer the following questions.

• Does the number of eggs appear to reach a maximum with a symmetrical decrease on both sides of the
maximum as predicted by the equation above?

• Does the variance between replicates appear to be homogeneous?

Solution
library(ggplot2)
ggplot(therm, aes(x = temp, y = num_eggs)) +

geom_point()
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The number of eggs seems to reach a maximum around 25 degrees. The variance does not seem homogeneous,
being greater for temperatures where the number of eggs is greater.

b) To model these data, we will use a Poisson distribution, where the mean λ corresponds to the N
calculated according to the above equation.

Why is it preferable here to use a Poisson distribution rather than a normal distribution to represent the
random variation in the number of eggs around the predicted mean value?

Solution

These are count data (integers > 0) and their variance appears to increase with the mean, as predicted by
the Poisson distribution.

c) Create an R function to calculate the negative log-likelihood of the observed number of eggs as a
function of the model parameters No, To and σT . Note: The function dpois(y, lambda, log = TRUE)
is used to compute the log of the probability of a vector of data y following a Poisson distribution with
a vector of means lambda.

Solution
temp_nll <- function(N_o, T_o, sigma_T) {

mu <- N_o * exp(-((therm$t-T_o)/sigma_T)^2)
-sum(dpois(therm$num_eggs, lambda = mu, log = TRUE))

}

d) Use the mle2 function to estimate the three parameters of the model according to maximum likelihood.

For this problem, it is necessary to specify bounds for each parameter, to prevent the optimizer from moving
too far away from plausible values. In the function mle2, the lower and upper bounds are given by the
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arguments lower and upper, e.g.: mle2(..., start = list(...), lower = c(no = 1, to = 5, s_t =
1), upper = c(...). Note that these arguments are specified by a vector c(...) whereas start (the initial
values) are specified by a list.

You can try different values for the bounds, however the lower bounds of No and σT should be at least 1, the
upper bound of σT should not exceed the range (max-min) of temperatures tested; likewise, the bounds for
To should be realistic values of temperature.

Note: You can ignore the warning Warning: bounds can only be used with method L-BFGS-B (or Brent).
However, if you get an error, try again by adjusting the parameter bounds.

Solution
library(bbmle)

## Loading required package: stats4

res <- mle2(temp_nll, start = list(N_o = 50, T_o = 20, sigma_T = 2),
lower = c(N_o = 1, T_o = 0, sigma_T = 1),
upper = c(N_o = 1000, T_o = 50, sigma_T = 20))

## Warning in optim(par = c(N_o = 50, T_o = 20, sigma_T = 2), fn = function (p) :
## bounds can only be used with method L-BFGS-B (or Brent)
res

##
## Call:
## mle2(minuslogl = temp_nll, start = list(N_o = 50, T_o = 20, sigma_T = 2),
## lower = c(N_o = 1, T_o = 0, sigma_T = 1), upper = c(N_o = 1000,
## T_o = 50, sigma_T = 20))
##
## Coefficients:
## N_o T_o sigma_T
## 125.254248 23.862510 6.702089
##
## Log-likelihood: -232.92

e) Visualize the profile likelihood for each parameter and calculate the 95% confidence intervals. Do you
think the quadratic approximation would be good for these parameters?

Solution
pro <- profile(res)
plot(pro)
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confint(pro)

## 2.5 % 97.5 %
## N_o 118.725387 132.059041
## T_o 23.643472 24.088414
## sigma_T 6.456217 6.970186

The quadratic approximation would be good because the profile likelihood for each parameter (after square
root transformation) follows a straight line.

f) Let us now compare the model predictions with the data.

• Add a column to the dataset for the model mean predictions (the λ of the Poisson model for each
observation), obtained by replacing the maximum likelihood estimates in the N equation above.

• Simulate 1000 data sets from the Poisson distribution with the estimated λ values. To generate a
dataset, use rpois(n, lambda) where n is the number of observations (the number of rows in the
original dataset) and λ is the column of mean predictions. To generate 1000 datasets, use replicate.
The result of replicate should be a matrix of n rows and 1000 columns (1 column per simulation).

• To obtain a 95% prediction interval for each observation, calculate the appropriate quantiles for each
row of the matrix of simulations with apply. For example, apply(sim_mat, 1, quantile, prob =
0.025) applies the quantile function to each row of sim_mat, with the prob argument of quantile
set to 0.025. Do the same for the quantile at p = 0.975 and you will get two vectors for the lower and
upper bounds of the interval, which you can add to the dataset.

Note: These prediction intervals assume that the parameter estimates are exact and therefore ignore their
uncertainty.

• At this point, in addition to temp and num_eggs, your dataset contains three columns respectively
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representing the mean predictions, and the lower and upper bounds of the 95% prediction interval for
each observation. Add the mean prediction and the interval to the graph of num_eggs vs. temp, e.g. with
ggplot, you can add geom_line(aes(y = mean_pred)) to the graph to add a line representing the
mean_pred column of mean predictions, same for the lower and upper bounds of the interval.

From the results, can you tell whether the model represents the general trend of the data and the random
variation around that trend?

Solution
# The coef function returns the parameter values
coef_pois <- coef(res)
coef_pois

## N_o T_o sigma_T
## 125.254248 23.862510 6.702089

therm$mu <- coef_pois["N_o"] * exp(-((therm$t-coef_pois["T_o"])/coef_pois["sigma_T"])^2)
therm_sim <- replicate(1000, rpois(36, therm$mu))
therm$min <- apply(therm_sim, 1, quantile, prob = 0.025)
therm$max <- apply(therm_sim, 1, quantile, prob = 0.975)

library(ggplot2)
ggplot(therm, aes(x = temp, y = num_eggs)) +

geom_point() +
geom_line(aes(y = mu)) +
geom_line(aes(y = min), linetype = "dashed") +
geom_line(aes(y = max), linetype = "dashed")
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The model represents the general trend well, but underestimates the variability. The 95% prediction interval
contains only ~70% of the observations (25/36).

2. Negative binomial model

a) Repeat parts (c) to (f) of the previous number using a negative binomial distribution instead of the
Poisson distribution for the random portion of the model.

Reminder : In the Poisson distribution, the mean and variance are equal to λ. In the negative binomial
distribution, the mean is equal to µ and the variance is equal to µ + µ2/θ. For this problem, we will use
k = 1/θ as parameter. If θ > 0, k must take a value greater or equal to 0. Since the variance as a function of
k is µ+ kµ2, the Poisson distribution corresponds to the case k = 0. Here are the main changes to be made
to replace the Poisson model with the negative binomial model:

• Add the parameter k to the log-likelihood function. Replace the call to dpois with dnbinom(y, mu,
size = 1/k, log = TRUE) where mu is the mean prediction, so it is equivalent to the lambda of dpois.

• Use a lower bound of 0 for the k parameter in mle2; the upper bound should be less than 100.

• To simulate the data, replace rpois with rnbinom and specify the arguments mu (mean prediction) and
size = 1/k.

Solution
# Likelihood function, estimates and intervals
temp_nll <- function(N_o, T_o, sigma_T, k) {

mu <- N_o * exp(-((therm$t-T_o)/sigma_T)^2)
-sum(dnbinom(therm$num_eggs, size = 1/k, mu = mu, log = TRUE))

}

res <- mle2(temp_nll, start = list(N_o = 50, T_o = 20, sigma_T = 1, k = 1),
lower = c(N_o = 1, T_o = 0, sigma_T = 1, k = 0),
upper = c(N_o = 1000, T_o = 50, sigma_T = 20, k = 10))

res

##
## Call:
## mle2(minuslogl = temp_nll, start = list(N_o = 50, T_o = 20, sigma_T = 1,
## k = 1), lower = c(N_o = 1, T_o = 0, sigma_T = 1, k = 0),
## upper = c(N_o = 1000, T_o = 50, sigma_T = 20, k = 10))
##
## Coefficients:
## N_o T_o sigma_T k
## 123.188369 23.884264 6.821416 0.102698
##
## Log-likelihood: -143.93

plot(profile(res))
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confint(profile(res))

## 2.5 % 97.5 %
## N_o 104.20709233 147.2176826
## T_o 23.37301405 24.5051418
## sigma_T 6.33138839 7.4248342
## k 0.05916351 0.1855639

The profile likelihood of the parameters is close to the quadratic approximation, except for k where it is
non-quadratic and asymmetric.
# Predictions according to the parameter estimates
coef_nb <- coef(res)
therm$mu <- coef_nb["N_o"] * exp(-((therm$t-coef_nb["T_o"])/coef_nb["sigma_T"])^2)
therm_sim <- replicate(1000, rnbinom(36, mu = therm$mu, size = 1/coef_nb["k"]))
therm$min <- apply(therm_sim, 1, quantile, prob = 0.025)
therm$max <- apply(therm_sim, 1, quantile, prob = 0.975)

library(ggplot2)
ggplot(therm, aes(x = temp, y = num_eggs)) +

geom_point() +
geom_line(aes(y = mu)) +
geom_line(aes(y = min), linetype = "dashed") +
geom_line(aes(y = max), linetype = "dashed")
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Here the 95% prediction interval contains ~97% of the points (35/36).

b) Would it be correct to use the likelihood-ratio test to compare the Poisson model from the previous
section to the negative binomial model?

Solution

The likelihood-ratio test does not apply when the null hypothesis corresponds to a limit of the possible values
of the parameter. Here, the Poisson model corresponds to the negative binomial model with k = 0, which is
at the limit of possible values for this parameter.

c) Whether or not you answer yes or no to (b), do the results clearly show whether or not a negative
binomial model is justified (relative to the simpler Poisson model) for these data?

Solution

Yes, the model’s predictions are more consistent with observations and the log-likelihood of the negative
binomial model (-144) is much higher than that of the Poisson model (-233).
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