
Introduction to Bayesian analysis - Solutions

Data

Already used for maximum likelihood exercises, the thermal_range.csv dataset represents the result of an
experiment to determine the effect of temperature (temp) on the number of eggs (num_eggs) produced by
a species of mosquito. Three replicates were measured for temperature values between 10 and 32 degrees
Celsius.
library(brms)

therm <- read.csv("../donnees/thermal_range.csv")
head(therm)

## temp num_eggs
## 1 10 1
## 2 10 1
## 3 10 2
## 4 12 4
## 5 12 4
## 6 12 6

Bayesian estimation of the thermal optimum model

Let’s remember the model used previously for this dataset. The average number of eggs produced is given by
a Gaussian curve:

N = No exp
(

− (T − To)2

σ2
T

)
In this equation, To is the optimum temperature, No is the number of eggs produced at this optimum and σT

represents the tolerance around the optimum (the higher σT is, the slower N decreases around the optimum).

a) It is possible to estimate the parameters of a non-linear model like this one in brms. For example:
brm(bf(num_eggs ~ No * exp(-(temp-To)^2/sigmaT^2), No + To + sigmaT ~ 1, nl = TRUE),

data = therm)

Note:

• We need to enclose the formula in a bf function and specify the argument nl = TRUE (for non-linear).

• After the non-linear formula of the model, we need to add a term describing the parameters. Here,
No + To + sigmaT ~ 1 only means that we estimate a fixed effect for each parameter. If one of the
parameters varied according to a group variable, we could write for example No ~ (1|group), To +
sigmaT ~ 1.

Since we are going to use a negative binomial distribution with a logarithmic relationship to represent the
mean of the response (family = negbinomial in brms), we need to modify the formula above to represent
the logarithm of the mean number of eggs N . Rewrite the bf function by applying this transformation.
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Solution

logN = logNo − (T − To)2

σ2
T

brm(bf(num_eggs ~ logNo - (temp-To)^2/sigmaT^2, logNo + To + sigmaT ~ 1, nl = TRUE),
data = therm, family = negbinomial)

b) Choose appropriate prior distributions for three parameters in the equation obtained above. In the
set_prior statement, the parameter name is specified with nlpar for a non-linear model. For example,
set_prior("normal(0, 1)", nlpar = "To") assigns a standard normal distribution to the parameter
To.

Note: Don’t forget to specify the lower bound for sigmaT.

Also add a prior distribution for the θ parameter of the negative binomial distribution with
set_prior("gamma(2, 0.1)", class = "shape"). You can visualize this distribution in R with
plot(density(rgamma(1E5, 2, 0.1)). Since the variance of the negative binomial distribution is µ+ µ2/θ,
where µ is the mean, we want to avoid values of θ too close to zero. With the specified parameters, θ is
small for values close to 0 and greater than 50 (with a θ so large, the negative binomial distribution almost
matches that of Poisson).

Solution

Here is one possible prior choice:
prior_therm <- c(set_prior("normal(4, 2)", nlpar = "logNo"),

set_prior("normal(20, 10)", nlpar = "To"),
set_prior("normal(0, 5)", nlpar = "sigmaT", lb = 0),
set_prior("gamma(2, 1)", class = "shape"))

• The normal(4, 2) distribution for logNo gives ~95% probability to values of logN0 between 0 and 8,
so N0 between 1 and 3000 approximately.

• The normal(20, 10) distribution for To gives ~95% probability to values between 0 and 40 degrees C.

• The half-normal distribution (normal truncated at 0) for σT gives ~95% probability to values below 10.

Note that considering the temperature range tested in this experiment (between 10 and 32 degrees C), we
could not detect an optimum beyond this range anyway, or a standard deviation that would be much greater
than the difference between the extreme values tested.

c) Fit the non-linear model with brm, using the formula and prior distributions specified in the previous
parts, with a negative binomial distribution of the response. Visualize the shape of the estimated N
vs. T function with marginal_effects. Determine the mean value and the 95% credibility interval for
the posterior distribution of each parameter.

Solution
therm_fit <- brm(bf(num_eggs ~ logNo - (temp-To)^2/sigmaT^2,

logNo + To + sigmaT ~ 1, nl = TRUE),
data = therm, family = negbinomial, prior = prior_therm)

marginal_effects(therm_fit)

## Warning: Method 'marginal_effects' is deprecated. Please use
## 'conditional_effects' instead.
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summary(therm_fit)

## Family: negbinomial
## Links: mu = log; shape = identity
## Formula: num_eggs ~ logNo - (temp - To)^2/sigmaT^2
## logNo ~ 1
## To ~ 1
## sigmaT ~ 1
## Data: therm (Number of observations: 36)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logNo_Intercept 4.82 0.11 4.61 5.04 1.00 1977 2032
## To_Intercept 23.93 0.35 23.29 24.69 1.00 2292 1989
## sigmaT_Intercept 6.86 0.33 6.27 7.58 1.00 1744 2060
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## shape 6.05 1.55 3.45 9.51 1.00 3062 2712
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

d) Compare the results in (c) with the maximum likelihood estimates and confidence intervals obtained in
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lab 3, reproduced in the table below.

Parameter Estimate Interval
No 123.2 (104.2, 147.2)
To 23.9 (23.4, 24.5)
sigmaT 6.82 (6.33, 7.42)
k 0.103 (0.059, 0.186)

Note: The parameter k corresponds to 1/θ for the negative binomial distribution.

Solution

The results for To and σT are very close (considering the margin of error) for both methods.

For the other two parameters logNo and shape, we can transform the bounds of the intervals to compare
with No and k (but since k is the inverse of shape, we must swap the bounds). We can also transform the
posterior mean, but we do not expect it to be equal to the maximum likelihood estimate.
exp(c(4.82, 4.61, 5.04)) # N_o = exp(log_No)

## [1] 123.9651 100.4841 154.4700
1/(c(6.09, 9.39, 3.50)) # k = 1/shape

## [1] 0.1642036 0.1064963 0.2857143

The estimate of No is consistent for both methods, but the k parameter is higher for the Bayesian method
(meaning more overdispersion) compared to the maximum likelihood estimate.

e) Check the posterior prediction intervals with pp_check(..., type = "intervals"). Do the observa-
tions appear to be consistent with the fitted model?

Solution
pp_check(therm_fit, type = "intervals")

## Using all posterior samples for ppc type 'intervals' by default.
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If the model is good, we expect that about 50% of the points will be within the interval in bold and 90%
within the thinner line, which seems to be the case here.

f) As we will see next week, the Stan program that brms uses produces a sample of the joint posterior
distribution of the model parameters. By default, this sample includes 4000 parameter sets. The
posterior_epred function of brms calculates the mean prediction according to each of these parameter
sets for a new dataset given by the newdata argument, like the predict function in the case of regression
models.

Use the posterior_epred function to calculate the ratio of mean egg production at 25 degrees C compared
to 20 degrees C, and a 95% credibility interval for this ratio.

Solution

We first call posterior_epred with a dataset containing the two desired temperature values.
post_pred <- posterior_epred(therm_fit, newdata = data.frame(temp = c(20, 25)))
str(post_pred)

## num [1:4000, 1:2] 82.1 81.3 81.9 86.4 85.1 ...

The result is a matrix of 4000 rows (one per parameter set from the posterior distribution) and 2 columns
(for T = 20 C and T = 25 C).

The question asks for the mean and 95% credibility interval for the ratio between the means for these two
temperatures, i.e. each value in column 2 divided by the corresponding value in column 1.
N_20_25 <- post_pred[, 2] / post_pred[ ,1]
mean(N_20_25)

## [1] 1.355125
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quantile(N_20_25, probs = c(0.025, 0.975))

## 2.5% 97.5%
## 1.191149 1.534869
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