
Randomization tests

Introduction

Seen in the previous class, bootstrapping is a method for determining the distribution of a statistic from a
sample, without having to assume a parametric model for the sampling process. This method is based on the
resampling of the observed sample.

Randomization tests are another non-parametric method based on resampling. These tests aim to approximate
the distribution of a statistic in the case where a certain null hypothesis (e.g. independence between two
variables) is true.
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Hypothesis testing

A statistical hypothesis test is designed to determine whether the variation observed in an observed sample is
consistent with a “default” model (the null hypothesis), or whether observations are so unlikely under the
null hypothesis that it should be rejected.

Example: Mean compared to a reference value

Suppose a theory tells us that the mean of a variable x in a population would be equal to a reference value µ0.
We sample n values of this variable in the population; the sample mean is x̄ and its standard deviation is s.

If we can assume that x̄ follows a normal distribution, then the difference between x̄ and the population
mean µ, divided by the standard error of x̄ (i.e. s/

√
n), follows a t distribution with n− 1 degrees of freedom.

tn−1 = x̄− µ
s/
√
n

In this case, once x̄ and s are calculated, the t distribution tells us the probability, if the null hypothesis
µ = µ0 is correct, of obtaining a value of x̄ as far or further away from µ0 than the one calculated from this
sample.

For example, suppose that µ0 = 1, n = 9, x̄ = 4, and s = 5. In this case, t = (4− 1)/(5/3) = 1.8 if the null
hypothesis is true. The probability of observing such a large deviation if µ = µ0 is given by the area under
the curve of the t distribution with n− 1 = 8 degrees of freedom, for t > 1.8 or t < −1.8:

1



t_obs <- 1.8
ggplot(NULL) + xlim(-4, 4) +

labs(x = "t", y = "p(t)") +
stat_function(fun = function(x) dt(x, df = 8)) +
stat_function(fun = function(x) ifelse(abs(x) > t_obs, dt(x, df = 8), NA), geom = "area", fill = "#d3492a") +
scale_y_continuous(expand = c(0, 0))
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In R, the cumulative distribution function pt(q, df) gives the probability that a value from the t distribution
with df degrees of freedom is less than or equal to q. Therefore, the area under the curve can be calculated
as follows:
pt(-1.8, 8) + (1 - pt(1.8, 8))

## [1] 0.109553

This is the p-value of the test.

Note that the two terms of the sum are equal because the t distribution is symmetrical. A null hypothesis of
the type µ = µ0 is bilateral because the alternative can occur in either direction. For a one-sided hypothesis
(e.g., µ = µ0), the p-value would be the area under the curve on one side only.

Finally, the p-value is compared to a significance level α chosen before performing the test. The null hypothesis
is rejected if p < α. The significance level is therefore the probability of rejecting the null hypothesis if it is
true. The most commonly used value is α = 0.05.
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Components of a hypothesis test

Starting from a given null hypothesis, the construction of a statistical test requires three main components:

• a statistic that measures the deviation of the observations from the null hypothesis;
• the distribution of this statistic under the null hypothesis; and
• a significance level.

In some cases, as in the t test, the exact distribution of the test statistic under the null hypothesis can be
derived mathematically. Another example is the one-factor ANOVA, where the ratio of the observed variation
between groups to the variation within groups follows a F distribution when the observations in each group
come from the same normal distribution.

One-sample t-test (n individuals)
One-factor ANOVA (m groups of n
individuals)

Null
hypothesis

The mean x̄ equals µ Same mean in each of the m groups

Statistic t = (x̄− µ)/(s/
√
n) F = MSA/MSE

Distribution t with n− 1 degrees of freedom F with m(n− 1) and (m− 1)
degrees of freedom

Randomization tests provide a way to approximate the distribution of the statistic under certain null
hypotheses, when the data do not meet the assumptions to use a known theoretical distribution.
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Principle of randomization tests

Example

Let’s take the sphagnum_cover.csv dataset that we used for the bootstrapping exercises. It contains measures
of the percentage of sphagnum moss cover (sphcover) in three types of swamp habitats: drained (Dr, 9
replicates), rewetted (Re, 18 replicates) and undrained (Un, 9 replicates).
cover <- read.csv("../donnees/sphagnum_cover.csv")
ggplot(cover, aes(x = habitat, y = sphcover)) +

geom_boxplot()
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Let’s first focus on comparing the Dr and Re swamps.
library(dplyr)
cover2 <- filter(cover, habitat != "Un")
head(cover2)

## site habitat sphcover
## 1 KoniOj Dr 19.6287879
## 2 LakkOj Dr 5.6696970
## 3 LiOjNx Dr 0.1969697
## 4 LiOjSx Dr 4.8590909
## 5 RuOjSP Dr 5.3939394
## 6 RuOjSu Dr 0.0000000

Suppose this was an experimental design where 27 drained wetlands were selected in one area and 18 of these
27 were randomly selected for restoration, while the other 9 (control sites) remained drained.

4

../donnees/sphagnum_cover.csv


Consider the null hypothesis that treatment Re has no effect on the response variable sphcover. In this case,
the differences in sphagnum cover observed between sites are due to factors other than the treatment. In
particular, a dataset obtained by randomly permuting the values of the Dr and Re treatments between sites
is as likely, under the null hypothesis, as the observed dataset.

In R, the sample function is used to draw a sample from a vector. With the default settings, sample(x)
draws a sample without replacement equal in size to the vector x, which produces a permutation of the
original data.
set.seed(82022)
cover_perm <- cover2
cover_perm$habitat_perm <- sample(cover2$habitat)
head(cover_perm)

## site habitat sphcover habitat_perm
## 1 KoniOj Dr 19.6287879 Re
## 2 LakkOj Dr 5.6696970 Dr
## 3 LiOjNx Dr 0.1969697 Re
## 4 LiOjSx Dr 4.8590909 Re
## 5 RuOjSP Dr 5.3939394 Re
## 6 RuOjSu Dr 0.0000000 Re
ggplot(cover_perm, aes(x = habitat_perm, y = sphcover)) +

geom_boxplot()
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Randomization test for a difference between means

For the observed data, the rewetted sites have a mean sphcover around 16 percentage points greater than
drained sites.
diff_obs <- mean(cover2$sphcover[cover2$habitat == "Re"]) -

mean(cover2$sphcover[cover2$habitat == "Dr"])
diff_obs

## [1] 16.1413

We can approximate the distribution of this statistic under the null hypothesis by calculating the difference
for a large number of permutations of the treatments in the original sample.

To do this, we define a function containing the permutation operation and the difference calculation, and then
we repeat its execution with replicate. (Note that for a function without any arguments, it is necessary to
include empty parentheses after the function name in the replicate statement.)
diff_perm <- function() {

cover_perm <- cover2
cover_perm$habitat_perm <- sample(cover2$habitat)
mean(cover_perm$sphcover[cover_perm$habitat_perm == "Re"]) -

mean(cover_perm$sphcover[cover_perm$habitat_perm == "Dr"])
}

nperm <- 9999

diff_null <- replicate(nperm, diff_perm())

The graph below shows a histogram of the difference values obtained by permutation, with a dotted line
showing the observed difference.
perm_hist <- ggplot(NULL, aes(x = diff_null)) +

labs(x = "Mean difference in sphcover (Re - Dr)", y = "Frequency") +
geom_histogram(color = "black", fill = "white") +
geom_vline(xintercept = diff_obs, linetype = "dashed", color = "#b3452c", size = 1) +
scale_y_continuous(expand = c(0, 0))

perm_hist
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Since the null hypothesis assumes no effect of the treatment, the mean difference should be 0. The mean of
the permutation results differs somewhat from zero because of the numerical approximation (9999 randomly
selected permutations across all possible permutations).
mean(diff_null)

## [1] 0.08801381

Calculating the p-value

In general, suppose that the statistic T measures the deviation of the observed data from the null hypothesis.
For the observed sample, T = Tobs; for the N permutations, we get a set of values T ∗.

In this case, the p-value of the test is calculated as follows:

# (|T ∗| ≥ |Tobs|) + 1
N + 1

The term #(|T ∗| ≥ |Tobs|) is the number of values of T ∗ with an absolute value that is greater than or equal
to the absolute value of Tobs. So if Tobs = 16, we count the number of values ≥ 16 or ≤ −16. In the case of a
one-sided hypothesis test, we count the extreme values on one side only.

In our example, p = 0.009.
(sum(abs(diff_null) >= abs(diff_obs)) + 1) / (nperm + 1)

## [1] 0.009
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Note that each comparison produces a logical value (TRUE or FALSE) and sum counts the number of TRUE
values.

The addition of 1 to the numerator and denominator in the p-value equation represents the fact that the
observed data is one of the possible permutations. Increasing the number of permutations makes it possible
to determine p with a better resolution. With N permutations, the minimum possible value for p is equal to
1/(N + 1), obtained when the observed statistic is more extreme than every simulated value.

Assumptions of the randomization test

In an experimental context, it is the random assignment of treatments to individuals that ensures that the
randomization test is valid, i.e., the samples produced by swapping treatments represent the distribution of
the statistic under the null hypothesis.

In a context where treatments have been observed rather than assigned, the randomization test requires that
the observations be exchangeable if the null hypothesis is true, i.e., that each sample obtained by permutation
is equally likely.

For example, the hypothesis that a response variable is equally distributed in each group can be tested by
randomization. However, we could not test the hypothesis that two groups have the same mean but a different
variance, since permuting group labels would erase this difference in variances.

Exchangeability of observations also does not apply if the observations are grouped (e.g., plots grouped
together in sites) or correlated in space and time. This type of case requires more complex types of permutation
that preserve the structure of the data.

Randomization tests are also sometimes referred to as permutation tests. Some authors reserve these two
names for different situations (e.g., depending on whether or not it is an experimental device, or whether it is
an exact or approximate test), but we will not make a distinction here.

Comparison between bootstrapping and randomization tests

Bootstrapping and randomization tests are two non-parametric methods of inference based on the simulation
of virtual samples (Monte Carlo methods). They can sometimes be applied to the same problem, as in our
example of sphagnum moss cover in different habitats.

For this example, the bootstrap proceeds by resampling the observations in each habitat type (keeping
the relation between sphcover and habitat). By calculating the difference in mean coverage, we obtain a
distribution of this difference centered on the value of the statistic for the observed sample (dotted line). This
distribution allows us, in particular, to calculate the confidence interval for a given probability.
library(boot)

diff_boot <- function(x, i) {
cover_boot <- x[i, ]
mean(cover_boot$sphcover[cover_boot$habitat == "Re"]) -

mean(cover_boot$sphcover[cover_boot$habitat == "Dr"])
}

diff_boot_res <- boot(cover2, diff_boot, R = 10000)

ggplot(NULL, aes(x = diff_boot_res$t)) +
labs(x = "Mean difference in sphcover (Re - Dr)", y = "Frequency") +
geom_histogram(color = "black", fill = "white") +
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geom_vline(xintercept = diff_obs, linetype = "dashed", color = "#b3452c", size = 1) +
scale_y_continuous(expand = c(0, 0))
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In contrast, the randomization test resamples without replacement (permutes) the habitat types to simulate
the absence of a relationship between sphcover and habitat. We thus obtain a distribution of the mean
difference in cover under the null hypothesis, centered on 0, which allows us to calculate the probability of
having obtained a more extreme value than the observed one, if the null hypothesis were true.
perm_hist

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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There is a general relationship between a hypothesis test and a confidence interval. If the 100(1 − α)%
confidence interval of a parameter θ does not include θ0, then the hypothesis θ = θ0 can be rejected with a
significance level of α.

For example, if the 95% confidence interval for the difference in means excludes 0, then we know that
the p-value associated with the hypothesis that this difference is zero is less than 0.05. However, the
bootstrap confidence interval does not allow us to obtain the precise p-value for a given test. In contrast, if a
randomization test allows us to reject the null hypothesis, it is not easy to deduce the confidence interval for
the value of the parameter from this test.

Finally, there are statistical tests where the null hypothesis cannot be represented by randomization. For
example, when comparing the mean of a single group to a reference value, there is nothing to randomize.
In this case, one can still obtain a confidence interval with the bootstrap and check whether it includes the
reference value.

Randomization and one-way ANOVA

One-way ANOVA model

Suppose we measure the variable y for m groups each comprising n observations. The one-way ANOVA
model assumes that yik, the observation k in group i, is the sum of three terms: the global mean of the
population µ, the difference αi between the mean of group i and the global mean, and then a residual εik.

yik = µ+ αi + εik
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In particular, residuals in each group follow a normal distribution with the same variance.

εik ∼ N(0, σ)

For this model, the null hypothesis is that the mean of all groups is identical, i.e. all αi are 0.

Let us denote by ȳ the global mean of the observations and by ȳi the mean of the observations in group i.
The sum of the squared deviations between the observations and the global mean (SST ) can be decomposed
into two parts: one part due to the deviations between the group means and the global mean (SSA) and one
part due to the deviations between the observations and the mean of their group (SSE).

SST = SSA+ SSE
m∑

i=1

n∑
k=i

(yik − ȳ)2 =
m∑

i=1
n(ȳi − ȳ)2 +

m∑
i=1

n∑
k=i

(yik − ȳi)2

Dividing SSA and SSE by the appropriate number of degrees of freedom (i.e., m− 1 for intergroup differences,
m(n−1) for differences between observations in the same group) yields the mean square errors MSA and MSE,
which we can consider as inter-group and intra-group variances, respectively. The F statistic corresponds to
the MSA/MSE ratio. The higher the F , the larger the inter-group variance compared to the intra-group
variance.

ComponentSum of squares (SS) Degrees of freedom (df) Mean square (MS)

Groups SSA =
∑m

i=1 n(ȳi − ȳ)2 m− 1 MSA = SSA
m−1

ResidualsSSE =
∑m

i=1
∑n

k=i(yik − ȳi)2 m(n− 1) MSE = SSE
(n−1)m

Total SST =
∑m

i=1
∑n

k=i(yik − ȳ)2 mn− 1

If the null hypothesis is true, i.e., the observed differences between groups are due to the random sampling
alone, the F statistic follows the F distribution, with two parameters corresponding to the number of degrees
of freedom of MSA and MSE.

The F test is one-tailed. If the group means differ, the F statistic will be larger than expected under the null
hypothesis.

Here is for example the result of a classical ANOVA comparing sphagnum cover for the three habitat types of
the cover dataset.
aov_cover <- aov(sphcover ~ habitat, data = cover)
summary(aov_cover)

## Df Sum Sq Mean Sq F value Pr(>F)
## habitat 2 7048 3524 14.88 2.47e-05 ***
## Residuals 33 7814 237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It will be useful later to extract the F value corresponding to the difference between habitats, which we can
do by first saving the output of summary.
aov_sum <- summary(aov_cover)
f_obs <- aov_sum[[1]][1, 4]
f_obs

## [1] 14.8819
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In the code above, [[1]] extracts the first ANOVA table (there is only one here), then [1, 4] extracts the
value in row 1 (habitat), column 4 (F value).

Randomizing the ANOVA

If the ANOVA assumptions are not met, especially if the data from each group departs significantly from a
normal distribution, then the calculated F statistic will not exactly follow a F distribution. In this case, we
can determine the distribution of the statistic by a randomization test.

As with the comparison of two means, we perform a permutation of the values in the habitat column and
then extract the F value from the ANOVA applied to the permuted data.
f_perm <- function() {

cover_perm <- cover
cover_perm$habitat_perm <- sample(cover$habitat)
aov_sum <- summary(aov(sphcover ~ habitat_perm, data = cover_perm))
aov_sum[[1]][1, 4]

}

nperm <- 9999

f_null <- replicate(nperm, f_perm())

ggplot(NULL, aes(x = f_null)) +
labs(x = "Mean difference in sphcover (Re - Dr)", y = "Frequency") +
geom_histogram(color = "black", fill = "white") +
geom_vline(xintercept = f_obs, linetype = "dashed", color = "#b3452c", size = 1) +
scale_y_continuous(expand = c(0, 0))
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Here, the F statistic calculated from the observations exceeds all the values obtained by permutation, so we
obtain the minimum possible p value according to the number of permutations, i.e. 1/10000.
(sum(f_null >= f_obs) + 1) / (nperm + 1)

## [1] 1e-04

ANOVA for a multivariate response

The ANOVA model can be generalized to the case where the response y is multivariate; for example, if we
want to compare community composition (abundance of several species) at sites with different treatments.

After selecting an appropriate distance measure to characterize the level of dissimilarity between the
compositions of two sites, the mean square distance between (i) sites with the same treatment and (ii) sites
with different treatments is calculated. These two statistics are equivalent to the MSE and MSA, respectively,
so their ratio is analogous to the F statistic. As in the univariate case, we can calculate the p value of this
statistic by randomizing the treatments, with the null hypothesis being that the treatments have no effect on
the multivariate composition.

This method known as PERMANOVA (for permutational multivariate analysis of variance) is implemented
in several software packages, including the R vegan package (adonis function) and the commercial software
PRIMER.
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Simple linear regression

The dataset environment.csv (from the textbook by Beckerman and Petchey, Getting started with R: An
introduction for biologists) includes root biomass measurements (biomass, in g/m2) at 10 sites as a function
of altitude (in m), temperature (in degrees C) and annual rainfall (in m).
enviro <- read.csv("../donnees/environment.csv")

For this example, we will consider how biomass varies with precipitation.
ggplot(enviro, aes(x = rainfall, y = biomass)) +

geom_point()
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According to the linear regression model below, biomass is estimated to increase by 144 g/m2 when annual
precipitation increases by one meter. The probability of obtaining an estimate of this magnitude when the
coefficient is equal to zero is equal to p = 0.034; this p value is based on a normal distribution for this
estimate.
mod <- lm(biomass ~ rainfall, data = enviro)
summary(mod)

##
## Call:
## lm(formula = biomass ~ rainfall, data = enviro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -78.136 -24.178 -7.373 2.204 144.424
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 43.93 38.18 1.151 0.283
## rainfall 144.40 56.55 2.553 0.034 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 67.44 on 8 degrees of freedom
## Multiple R-squared: 0.449, Adjusted R-squared: 0.3802
## F-statistic: 6.52 on 1 and 8 DF, p-value: 0.03399

To carry out a randomization test of this same hypothesis (absence of correlation between biomass and
rainfall), we can permute the precipitation values and calculate the correlation coefficient between these
permuted data and the biomass observations.
nperm <- 9999
rain_cor <- function() {

rain_perm <- sample(enviro$rainfall)
cor(rain_perm, enviro$biomass)

}

rain_null <- replicate(nperm, rain_cor())

Note that the correlation coefficient between rainfall and biomass is proportional to the coefficient of the
above regression and the proportionality factor (the ratio between the variances of biomass and rainfall)
remains unchanged with the permutations. Thus, the value p will be the same for both statistics: regression
coefficient and correlation coefficient.
rain_obs <- cor(enviro$rainfall, enviro$biomass)
(sum(abs(rain_null) > abs(rain_obs)) + 1) / (nperm + 1)

## [1] 0.0388

Here, the p-value of the randomization test is very close to the one obtained from the classical linear model
above (p = 0.034).

Models with multiple predictors

So far, we have considered randomization tests for models with a single predictor variable (numerical or
categorical). The distribution of the statistic, under the null hypothesis where the predictor has no effect, can
be obtained by random permutation of the predictor values. This permutation has the effect of “destroying”
any existing correlation between the response and the predictor.

The situation becomes more complicated when we want to test the absence of effect of a predictor in a model
with several predictors. For example, consider the case where y is a linear function of x and w:

y = β0 + β1x+ β2w

In a multiple regression model, each coefficient gives the effect of one variable if the other terms remain
constant. Suppose we want to test the hypothesis β1 = 0.

In this case, permuting y eliminates its correlation with both x and w. It therefore simulates the null
hypothesis where both predictors have no effect. Permuting x retains the relationship between y and w,
but eliminates a possible correlation between x and w, so the resulting permuted samples are no longer
representative of the joint distribution of predictors.
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Anderson (2001) discusses this problem in detail and recommends Freedman and Lane’s method of first
estimating the parameters of a model without x:

y = β0 + β2w

then perform a randomization test for the correlation between the residuals of this model (i.e. the part of the
response not explained by w) and the variable x.

Anderson (2001) discusses special cases where other methods, such as Manly’s (swapping the values of y) and
ter Braak’s (swapping the residuals of the full model including x), would also be recommended.

In R, the permuco package allows automatic permutation tests for each predictor of a linear model (lmperm
function) or an ANOVA (aovperm function), with a choice of methods including those described by Anderson
(2001).

For example, here is the result of a regression of root biomass as a function of temperature and precipitation,
for the enviro dataset. By default, the lmperm function uses the Freedman and Lane method with 5000
permutations.
library(permuco)

lmperm(biomass ~ temperature + rainfall, data = enviro)

## Table of marginal t-test of the betas
## Permutation test using freedman_lane to handle nuisance variables and 5000 permutations.
## Estimate Std. Error t value parametric Pr(>|t|) permutation Pr(<t)
## (Intercept) 525.28 97.247 5.4015 0.001007
## temperature -22.32 4.423 -5.0465 0.001486 0.0030
## rainfall -29.51 44.449 -0.6639 0.528029 0.2678
## permutation Pr(>t) permutation Pr(>|t|)
## (Intercept)
## temperature 0.9972 0.0030
## rainfall 0.7324 0.5264

The results table shows both the p-value for the standard (two-tailed) parametric test, as well as the one-tailed
and two-tailed p-values obtained by randomization. In this case, there is little difference between the bilateral
randomization test (last column) and the parametric tests.

Summary

• Randomization tests offer a non-parametric alternative to many conventional hypothesis tests, when
the null hypothesis represents the absence of effect of a predictor on a given response.

• The distribution of the test statistic under the null hypothesis is approximated by calculating this
statistic for many permutations of the original data set. These permutations are designed to break any
association between the response and the tested predictor, while maintaining the other characteristics
of the dataset.

• The sample function allows permutations of a vector of values in R. By combining permutation and
calculation of the statistic in the same function, several simple randomization tests can be manually
coded (comparison of means, single-factor ANOVA, simple linear regression).

• The permuco package in R provides functions to perform randomization tests for each predictor of a
multiple linear model or a multi-way ANOVA.
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