
Maximum likelihood

Introduction

Maximum likelihood is a general method for estimating the parameters of a statistical model. For example,
suppose we have a series of observations of a random variable y and a potential statistical model for that
variable. This model can include the dependence of y on other predictor variables, as well as a statistical
distribution for the unexplained portion of the variation in y. In general, such a model contains various
unknown parameters that must be fitted to the observed data.

In the maximum likelihood method, the best estimates of the parameters of a model are those that maximize the
probability of the observed values of the variable. This method can be applied regardless of the mathematical
form of the model, allowing us to choose models that are most compatible with our understanding of natural
processes, without being limited by models already implemented in statistical software. (The Bayesian
methods we will see later in the course also have this versatility).

While the general maximum likelihood method was not presented in the course prior to this one (ECL7102),
some of the methods seen in that course were based on this principle:

• Model selection using AIC is based on the likelihood function.

• Parameter estimation in generalized linear models is performed by maximizing the likelihood.

• Parameter estimation in mixed linear models uses a modified version of the maximum likelihood (the
restricted maximum likelihood or REML).

Contents

• Principle of maximum likelihood

• Application of the maximum likelihood in R

• Likelihood-ratio test

• Calculation of confidence intervals

• Estimation of several parameters: profiled likelihood and linear approximation

Principle of maximum likelihood

Likelihood function

Suppose we want to estimate the germination rate of a seed lot by germinating 20 of those seeds under the
same conditions. If the variable y represents the number of successfully germinated seeds for one run of the
experiment, then y follows a binomial distribution:

f(y|p) =
(
n

y

)
py(1− p)n−y
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where n = 20 is the number of attempts (number of seeds, in this case), p is the germination probability for
the population and

(
n
y

)
represents the number of ways to choose y individuals among n. We write f(y|p) to

specify that this distribution of y is conditional on a specific value of the parameter p.

For example, here is the distribution of y if p = 0.2. The probability to get y = 6 in this case is approximately
0.11 (dotted line on the graph).
ggplot(data.frame(x = 0:20), aes(x)) +

labs(x = "y", y = "f(y|p=0.2)") +
stat_function(fun = dbinom, n = 21, args = list(size = 20, prob = 0.2),

geom = "bar", color = "black", fill = "white") +
geom_segment(aes(x = 0, xend = 6, y = dbinom(6, 20, 0.2),

yend = dbinom(6, 20, 0.2)),
color = "#b3452c", linetype = "dashed", size = 1) +

scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0))
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If we have observed y = 6, but do not know p, the same equation allows us to calculate the probability of
having obtained this y for each possible value of p. Viewed as a function of p, rather than y, this same
equation corresponds to the likelihood function (noted L) of p.

L(p) = f(y|p) =
(
n

y

)
py(1− p)n−y

Here is the shape of L(p) for y = 6 and n = 20:
ggplot(NULL) +

labs(x = "p", y = "L(p)") +
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stat_function(fun = function(x) dbinom(6, 20, prob = x),
geom = "density") +

geom_segment(aes(x = 0, xend = 0.2, y = dbinom(6, 20, 0.2),
yend = dbinom(6, 20, 0.2)),

color = "#b3452c", linetype = "dashed", size = 1) +
geom_segment(aes(x = 0.2, xend = 0.2, y = 0, yend = dbinom(6, 20, 0.2)),

color = "#b3452c", linetype = "dashed", size = 1) +
scale_x_continuous(limits = c(0, 1), expand = c(0, 0)) +
scale_y_continuous(limits = c(0, 0.2), expand = c(0, 0))
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The likelihood of p = 0.2 for this observation of y is therefore also 0.11. Note that while f(y|p) was a discrete
distribution, since p is a continuous parameter, the likelihood L(p) is defined for all real values between 0 and
1.

More generally, suppose that y = (y1, y2, ..., yn) is a vector of observations and θ = (θ1, ..., θm) is a vector of
the adjustable parameters of the model proposed to explain these observations. In this case, the likelihood of
a specific vector of values for θ corresponds to the joint probability of the observations of y, conditional on
those values of θ. We will see a specific example of the calculation of L for a multi-parameter model (normal
distribution) in the next section.

L(θ) = p(y|θ)

Note: Even if the value of L(θ) for a given θ is a probability, the likelihood function is not a probability
distribution, because in the theory seen here, θ is not a random variable. Also, the integral of a likelihood
function (area under the curve of L(θ) vs. θ) is not always equal to 1, unlike that of a probability density.
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Maximum likelihood

According to the principle of maximum likelihood, the best estimate of the model’s parameters according to
our observations y is the vector of θ values that maximizes the value of L(θ).

Example: Binomial distribution

For the binomial model presented above, it is possible to demonstrate (see the calculation in Bolker’s textbook
chapter cited in the references) that the maximum likelihood estimate of p is given by:

p̂ = y

n

In other words, the proportion of successes in the sample is the best estimate of the probability of success in
the population. With y = 6 and n = 20, we see that the maximum of L(p) is obtained for p = 0.3.
ggplot(NULL) +

labs(x = "p", y = "L(p)") +
stat_function(fun = function(x) dbinom(6, 20, prob = x),

geom = "density") +
geom_segment(aes(x = 0, xend = 0.3, y = dbinom(6, 20, 0.3),

yend = dbinom(6, 20, 0.3)),
color = "#b3452c", linetype = "dashed", size = 1) +

geom_segment(aes(x = 0.3, xend = 0.3, y = 0, yend = dbinom(6, 20, 0.3)),
color = "#b3452c", linetype = "dashed", size = 1) +

scale_x_continuous(limits = c(0, 1), expand = c(0, 0)) +
scale_y_continuous(limits = c(0, 0.2), expand = c(0, 0))
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Example: Linear model

In the simple linear regression model, the response variable y follows a normal distribution, with the mean
linearly dependent on the predictor x, and with a constant standard deviation σ:

y ∼ N(β0 + β1x, σ)

This model includes three parameters to estimate: β0, β1 and σ. The probability density for an observation y
is thus given by:

f(y|β0, β1, σ) = 1
σ
√

2π
e− 1

2 ( y−β0−β1x
σ )2

If we perform n independent observations of y (each with a predictor value x), their joint probability density is
given by the product (noted Π) of the individual probability densities. Viewed as a function of the parameters,
the following equation thus gives the joint likelihood of β0, β1 and σ:

L(β0, β1, σ) = f(y1, ..., yn|β0, β1, σ) =
n∏
i=1

1
σ
√

2π
e

− 1
2

(
yi−β0−β1xi

σ

)2
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Log-likelihood

In practice, it is often easier to calculate the log-likelihood, i.e. l = logL. Since the log is a monotonic
function – that is, if L increases, logL increases too – then the value of the parameters that maximizes l will
also maximize L.

Since a logarithm transforms a product into a sum:

log(xy) = log(x) + log(y)

the log-likelihood for the linear regression problem above is given by:

l(β0, β1, σ) =
n∑
i=1

(
log
(

1
σ
√

2π

)
− 1

2

(
yi − β0 − β1xi

σ

)2
)

or by simplifying further:

l(β0, β1, σ) = n log
(

1
σ
√

2π

)
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)2

Note that the β coefficients appear only in the second term of the equation, which contains the sum of
the squared model residuals. The more this term decreases, the more l increases, which explains why the
estimates of the β coefficients by the method of least squares are the same as those obtained by the minimum
likelihood method.

For relatively simple functions, the position of the maximum can be determined by finding the value of each
parameter where the derivative of l according to this parameter is 0. In particular, for the variance of the
residuals σ2, the following estimate is obtained:

σ̂2 = 1
n

n∑
i=1

(yi − β0 − β1xi)2

We know that this variance estimator is biased (an unbiased estimate would require $n - $1 in the denominator).
The maximum likelihood does not guarantee an unbiased estimate, but the theory indicates that the bias
becomes negligible for a large enough sample; in this example, the difference between n− 1 and n becomes
less significant as n increases.

Application of the maximum likelihood in R

Example: Plants of the Galapagos Islands

The file galapagos.csv contains a dataset on the plant species richness for 30 islands of the Galapagos
Archipelago. (Source: Johnson, M.P. and Raven, P.H. 1973. Species number and endemism: The Galapagos
Archipelago revisited. Science 179: 893–895.)
galap <- read.csv("../donnees/galapagos.csv")
str(galap)

## 'data.frame': 30 obs. of 8 variables:
## $ Name : chr "Baltra" "Bartolome" "Caldwell" "Champion" ...
## $ Species : int 58 31 3 25 2 18 24 10 8 2 ...
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## $ Endemics : int 23 21 3 9 1 11 0 7 4 2 ...
## $ Area : num 25.09 1.24 0.21 0.1 0.05 ...
## $ Elevation: int 346 109 114 46 77 119 93 168 71 112 ...
## $ Nearest : num 0.6 0.6 2.8 1.9 1.9 8 6 34.1 0.4 2.6 ...
## $ Scruz : num 0.6 26.3 58.7 47.4 1.9 ...
## $ Adjacent : num 1.84 572.33 0.78 0.18 903.82 ...

We will model these data with a negative binomial distribution. This distribution is appropriate to represent
count data with a variance greater than that predicted by the Poisson distribution.

If a variable y follows a Poisson distribution, then its mean and variance are both given by the same parameter
λ .

y ∼ Pois(λ)

The negative binomial distribution has two parameters, µ et θ.

y ∼ NB(µ, θ)

In this model, y has a mean of µ and a variance of µ+ µ2

θ . The parameter θ is always positive. A small value
of θ represents a more variable distribution, while if θ is very high, the second term is negligible and the
distribution approaches the Poisson distribution.

As in Poisson regression, the negative binomial model uses a logarithmic link to relate µ to a linear function
of the predictors.

logµ = β0 + β1x1 + β2x2 + ...

For this example, we will fit the model for the number of species (Species) according to the area of the island
(Area, in km2) and the distance to the nearest island (Nearest, in km). We also take the logarithm of each
predictor.

Using the bbmle package

Most models do not allow the location of the maximum likelihood to be derived analytically. In this case, we
use optimization algorithms that numerically estimate the maximum value of the (log-)likelihood function
and the value of each parameter corresponding to this maximum.

In R, the optim function is a general tool for determining the minimum or maximum of a given function.
However, there are also specialized functions for the maximum likelihood estimation problem: in this course,
we will use the mle2 function from the bbmle package.

First, we need to write a function that calculates the negative log-likelihood for our problem. By convention,
optimization algorithms require a function to be minimized, so instead of maximizing the log-likelihood, we
minimize its opposite.
nll_galap <- function(b_0, b_area, b_near, theta) {

mu_sp <- exp(b_0 + b_area * log(galap$Area) + b_near * log(galap$Nearest))
-sum(dnbinom(galap$Species, mu = mu_sp, size = theta, log = TRUE))

}

The function nll_galap above accepts four parameters that correspond to the three coefficients of the linear
predictor and the θ parameter of the negative binomial distribution.
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• The first line of the function calculates the linear predictor and takes its exponential to obtain the mean
number of species mu_sp. Reminder : In R, most mathematical operations are performed in parallel on
vectors. Thus, mu_sp contains 30 values, the first one calculated from the predictor values for island 1,
the second one for island 2, and so on.

• The second line calculates the log-likelihood of each observation according to the binomial model with
dnbinom (also in parallel), calculates their sum then takes the negative.

Note that we specify log = TRUE in dnbinom to compute the log-likelihood. As seen previously, the log-
likelihood of a set of observations is equal to the sum of their individual log-likelihoods, as long as the
observations are independent.

Finally, we load the bbmle package and call the function mle2. The first argument of that function is our
function calculating the negative log-likelihood. We also need to specify for the start argument a list of the
initial values of each parameter, which the algorithm will use to start the search for the maximum.

The exact choice of the initial values does not matter in most cases, but it is recommended to give plausible
(not too extreme) values of the parameters. We therefore choose a null value for each coefficient, but a
positive value for θ which must be greater than zero.
library(bbmle)

mle_galap <- mle2(nll_galap, start = list(b_0 = 0, b_area = 0, b_near = 0, theta = 1))
mle_galap

##
## Call:
## mle2(minuslogl = nll_galap, start = list(b_0 = 0, b_area = 0,
## b_near = 0, theta = 1))
##
## Coefficients:
## b_0 b_area b_near theta
## 3.3352151 0.3544290 -0.1042696 2.7144722
##
## Log-likelihood: -137.98

Executing the function produces several warnings in R, which are not shown here. These probably result
from cases where the algorithm tries to assign a negative value to theta and produces an error. In this case,
it simply tries a new value.

Interpreting the likelihood

Notice that the maximum log-likelihood in the above result is -137.98, which is a very small value of the
likelihood:
exp(-137.98)

## [1] 1.191372e-60

The likelihood is the probability of obtaining exactly the values appearing in the dataset, according to the
model. Considering the many possible values for an observation of the variable and the fact that these
possibilities multiply for each subsequent observation, it is not surprising that this probability is very low
and even lower for a large sample.

The absolute value of the likelihood is not really interpretable. Rather, it is its relative value that makes it
possible to compare the fit of different values of the parameters based on the same observed data.

Nevertheless, it is difficult to work with numbers that are extremely close to zero; this is one of the reasons
why the log-likelihood is used in practice.
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When to use the maximum likelihood method?

For our example, we could have used the function glm.nb from the MASS package, which is specifically
designed to estimate the parameters of a negative binomial regression. By fitting our model with this function,
we can verify that the results match the application of mle2.
library(MASS)
glm.nb(Species ~ log(Area) + log(Nearest), galap)

##
## Call: glm.nb(formula = Species ~ log(Area) + log(Nearest), data = galap,
## init.theta = 2.714482206, link = log)
##
## Coefficients:
## (Intercept) log(Area) log(Nearest)
## 3.3352 0.3544 -0.1043
##
## Degrees of Freedom: 29 Total (i.e. Null); 27 Residual
## Null Deviance: 138.7
## Residual Deviance: 32.7 AIC: 284

The functions available in R and various packages already cover a number of common models, including
linear models, generalized linear models, mixed models and other models. Also, many models that do not
appear linear can be linearized with an appropriate transformation. For example, a power law between the
number of species S and the habitat area A:

S = cAz

can be transformed into a linear relationship by taking the logarithm on each side:

log(S) = log(c) + z log(A)

When a specialized function is available to estimate the parameters of a model, it is simpler to use it rather
than coding the model itself and applying the maximum likelihood method.

However, there are cases where the assumed model for the data does not fit into a standard format. Here are
some examples from forest ecology.

Fitting a dispersal kernel (e.g. Clark et al. 1999)

One way to estimate the dispersal capacity of a plant species is to sample seeds falling into traps placed at
different distances from parent plants. In particular, we are interested in estimating the dispersal kernel f(r),
which corresponds to the probability that a seed falls at a distance r from its point of origin.

Suppose that y represents the number of seeds in one of the traps and can be represented by a negative
binomial distribution.

yi ∼ NB(µi, θ)

The mean number of seeds in trap i, µi, corresponds to the sum of the contributions of each mother plant j
in the vicinity of the trap; this contribution is equal to the number of seeds produced by a mother plant (b,
which we assume to be fixed) multiplied by the dispersal kernel evaluated for the distance rij between trap i
and plant j.

yi ∼ NB(
∑
j

b× f(rij), θ)
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Since f is a non-linear function with its own adjustable parameters, and since the mean of y contains the
sum of values of f evaluated at different distances, it is necessary to write a custom likelihood function and
maximize it with a tool like mle2.

Estimation of the neighbourhood competition function (e.g. Canham et al. 2004).

The growth of trees in a forest can be reduced by competition from their neighbours. If we assume that
the competition exerted on a tree i by a neighbour j increases with the diameter Dj of this neighbour and
decreases with the distance rij between the two trees, we can define a competition index (CI ) summing the
effects of each neighbour on i:

CIi =
∑
j

Dδ
j

rγij

We wish to estimate the δ and γ exponents appearing in the index from the data. Suppose we have a linear
model of the growth yi of the tree i to which we add a term dependent on this index:

yi = β0 + ...+ βCI
∑
j

Dδ
j

rγij

There is no way to simplify this last term, so the maximum likelihood method can be useful to estimate the
coefficients (all β, γ and δ) of this now non-linear model.

Limitations of the maximum likelihood method

Most of the advantageous properties of maximum likelihood estimates, including the absence of bias, are
valid at the limit where the sample size is large. What constitutes a large enough sample size depends on the
model and in particular on the number of parameters to be estimated.

In practice, the maximum likelihood is obtained by a numerical algorithm seeking the maximum by an
iterative process. A complex likelihood function could have several local maxima (points where the function
is maximized with respect to parameter values near the point), in which case it is not guaranteed that the
algorithm finds the global maximum (the one with the highest likelihood overall).

Likelihood-ratio test

Test on the value of a parameter

It is possible to use the likelihood function to test a hypothesis about the value of a parameter.

For example, consider the likelihood function calculated at the beginning of the class to estimate the probability
of germination of a seed lot, if 6 seeds germinated out of 20 attempts.
ggplot(NULL) +

labs(x = "p", y = "L(p)") +
stat_function(fun = function(x) dbinom(6, 20, prob = x),

geom = "density") +
scale_x_continuous(limits = c(0, 1), expand = c(0, 0)) +
scale_y_continuous(limits = c(0, 0.2), expand = c(0, 0))
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In this case, the maximum likelihood estimate is p̂ = 0.3. Suppose that the seed supplier claims that the
germination rate is 50%. Is the result of the experiment consistent with this value?

The likelihood corresponding to the null hypothesis (p0 = 0.5) is about L(p0) = 0.037, compared to a
maximum of L(p̂) = 0.192.
l_0 <- dbinom(6, 20, prob = 0.5)
l_max <- dbinom(6, 20, prob = 0.3)
c(l_0, l_max)

## [1] 0.03696442 0.19163898

The ratio between these two L values is used to define a statistic for the likelihood-ratio test. This statistic is
-2 times the logarithm of the ratio between the likelihood of the parameter under the null hypothesis and the
estimated maximum likelihood.

−2 log
(
L(θ0)
L(θ̂)

)

Equivalently, we can replace the ratio by a difference of the log-likelihoods:

−2
(
l(θ0)− l(θ̂)

)
The factor -2 is added so that, if the null hypothesis is true and the sample is large enough, the distribution
of the statistic approaches a χ2 distribution with 1 degree of freedom.

In our example, the likelihood-ratio statistic is equal to 3.29.
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rv <- -2*log(l_0 / l_max)
rv

## [1] 3.291315

The probability of obtaining a ratio greater than or equal to this value, if the null hypothesis p = 0.5 is true,
can be approximated with the cumulative χ2 distribution.
1 - pchisq(rv, df = 1)

## [1] 0.06964722

Note: The likelihood-ratio test cannot be applied if the null hypothesis is at the limit of possible values for a
parameter. For example, for the parameter p of a binomial distribution, we cannot use this test for the null
hypothesis p0 = 0 or p0 = 1.

Model comparison

The likelihood-ratio test is also used to compare two models. In this case, the models must be nested, i.e. the
simpler model must contain a subset of the parameters of the more complex model. For example, suppose a
linear regression model with 1 predictor and a second model with 3 predictors.

• M1: y = β0 + β1x1 + ε
• M2: y = β0 + β1x1 + β2x2 + β3x3 + ε

In this case, M1 can be seen as a version of M2 where β2 and β3 are set to 0. If M1 is the true model for the
data, the likelihood ratio statistic between the two models approximately follows a χ2 distribution, with a
number of degrees of freedom equal to the difference in the number of estimated parameters between the two
models (here, 2).

−2 (lM1 − lM2) ∼ χ2(2)

In the previous course ECL7102, we used the Akaike information criterion (AIC) to compare models:

AIC = −2 logL+ 2K = −2l + 2K

In this formula, K is the number of adjustable parameters in the model. We also saw a corrected version of
AIC (AICc) for “small” samples (when N/K < 30, where N is the sample size).

The AIC has a broader scope than the likelihood-ratio test because more than two models can be compared,
whether they are nested or not. In cases where the two methods are applicable, their objectives are different:

• AIC aims to identify the model that would best predict the response for a new sample of the same
population;

• the likelihood-ratio test indicates whether the observed difference between the fit of the simpler and the
more complex model is consistent with the assumption that the simpler model is correct.

Calculation of confidence intervals

If θ̂ is the maximum likelihood estimate for a parameter θ, we can obtain a confidence interval for this
parameter by using the relationship between hypothesis testing and confidence interval:

If we cannot reject the null hypothesis θ = θ0 with a significance threshold α, therefore θ0 is
included in the 100(1− α)% confidence interval for θ.
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For example, the limits of the 95% confidence interval are the values of θ where the likelihood-ratio statistic
is equal to the 95th percentile of the χ2 distribution; this is the maximum value of the statistic that is not
rejected at a threshold α = 0.05.

−2
(
l(θ0)− l(θ̂)

)
= χ2

0.95(1)

Reminder : The χ2 test is one-sided, because only high values of the statistic indicate a significant deviation
from the null hypothesis.

If we isolate θ0 in the equation, we get:

l(θ0) = l(θ̂)− χ2
0.95(1)

2

We must therefore find the values of θ for which the log-likelihood is about 1.92 lower than the maximum.
qchisq(0.95, df = 1) / 2

## [1] 1.920729

Example

For our seed germination example (p̂ = 0.3), the 95% interval limits correspond to L = 0.0281.
exp(dbinom(6, 20, 0.3, log = TRUE) - qchisq(0.95, df = 1)/2)

## [1] 0.02807512

This threshold is represented by the dotted line on the graph below and corresponds to an interval of (0.132,
0.516) for p.
ggplot(NULL) +

labs(x = "p", y = "L(p)") +
stat_function(geom = "area", fill = "#d3492a", n = 1000,

fun = function(x) ifelse(x > 0.132 & x < 0.516,
dbinom(6, 20, prob = x), NA)) +

stat_function(fun = function(x) dbinom(6, 20, prob = x),
geom = "density") +

geom_hline(yintercept = 0.0279, linetype = "dashed") +
scale_x_continuous(limits = c(0, 1), expand = c(0, 0)) +
scale_y_continuous(limits = c(0, 0.2), expand = c(0, 0))
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For an experiment with the same estimate of p̂, but a larger sample (n = 50, y = 15), the limit of L for the
95% interval is 0.0179.
exp(dbinom(15, 50, 0.3, log = TRUE) - qchisq(0.95, df = 1)/2)

## [1] 0.01792382

As we can see below, the likelihood function and thus the confidence interval are narrower.
ggplot(NULL) +

labs(x = "p", y = "L(p)") +
stat_function(geom = "area", fill = "#d3492a", n = 1000,

fun = function(x) ifelse(x > 0.185 & x < 0.435,
dbinom(15, 50, prob = x), NA)) +

stat_function(fun = function(x) dbinom(15, 50, prob = x),
geom = "density") +

geom_hline(yintercept = 0.0179, linetype = "dashed") +
scale_x_continuous(limits = c(0, 1), expand = c(0, 0)) +
scale_y_continuous(breaks = seq(0, 0.12, 0.03),

limits = c(0, 0.13), expand = c(0, 0))
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Profile likelihood

If m parameters are estimated at the same time, the likelihood function is not a curve, but rather a surface
in m dimensions. When calculating the likelihood ratio −2

(
l(θ0)− l(θ̂)

)
for different values θ0 of one of the

parameters, one must therefore choose which value to give to the other m− 1 parameters. A simple solution
would be to set all the other parameters to their estimated maximum likelihood value, but this assumes that
these estimates are independent. In general, if one sets θ0 to a value other than θ̂, the maximum likelihood
estimate may change.

For example, in the linear regression model shown below, the best estimate of slope changes if the intercept
is set to 0 (dotted line).

## `geom_smooth()` using formula 'y ~ x'
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In order to create a curve of l(θ0) for different values of the parameter, it is thus necessary for each fixed
value of θ0 to find the maximum likelihood for the rest of the parameters. The resulting curve is called the
profile likelihood.

The profile function of the bbmle package evaluates the profiled likelihood of each parameter from the
result of mle2. Here is the result obtained for the model fitted earlier (negative binomial regression of the
number of plant species in the Galapagos Islands).
galap_pro <- profile(mle_galap)
plot(galap_pro)
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For each parameter, the graph shows the square root of the likelihood-ratio statistic
√
−2
(
l(θ0)− l(θ̂)

)
for the profile likelihood. The square root transformation allows us to quickly see if the log of the profile
likelihood is approximately quadratic (see next section), which would result in a symmetrical “V” after
transformation.

Different confidence intervals are superimposed on the graph; these intervals can also be obtained directly
with the function confint.
confint(galap_pro, level = 0.95)

## 2.5 % 97.5 %
## b_0 3.0259619 3.66809720
## b_area 0.2837173 0.42822254
## b_near -0.2600032 0.05105544
## theta 1.5113578 4.69693757

Quadratic approximation

Since calculating the profile likelihood for one parameter requires repeated fitting of the other parameters of
the model, this method is very time consuming for a complex model.

A more approximate, but much faster, method is to assume that the log-likelihood follows a quadratic
form. With only one parameter, this quadratic form is a parabola centered on the maximum likelihood:
−2
(
l(θ0)− l(θ̂)

)
= a(θ0 − θ̂)2. Here, the coefficient a measures the curvature of the parabola. As we saw in

the binomial example above, the more pronounced the curvature, the more precise the parameter estimate is.
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In fact, if the quadratic approximation is good, the variance of θ̂ (thus the square of its standard error) is the
inverse of the second derivative of −l, which measures the curvature at maximum.

d2(−l)
dθ2 = 1

σ2
θ̂

With m parameters, the curvature in m dimensions around the maximum is represented by a m×m matrix
of the second partial derivatives of −l, called the Fisher information matrix. By inverting this matrix, we
obtain the variances and covariances of the estimates. Assuming that the quadratic approximation is correct,
these variances and covariances are sufficient to obtain the desired confidence intervals for each parameter.

In the bbmle package, one can calculate the confidence intervals according to the quadratic approximation by
specifying method = "quad" in the confint function:
confint(mle_galap, level = 0.95, method = "quad")

## 2.5 % 97.5 %
## b_0 3.0246480 3.6457823
## b_area 0.2847479 0.4241100
## b_near -0.2536734 0.0451341
## theta 1.1781122 4.2508322

Here we note that the estimates are close to those of the profile likelihood, except for θ. By inspecting the
profile likelihood graphs above, it is apparent that the profile for θ departs further from the quadratic form.

Summary

• For a statistical model, the likelihood is a function that associates to each value of the parameters the
probability of the observed data, conditional to this parameterization. According to the principle of
maximum likelihood, the best estimate of the parameters is the one that maximizes the likelihood.

• In order to determine the maximum likelihood for a custom model in R, we must create a function that
calculates the log-likelihood as a function of the parameters and then use an optimization algorithm to
find the maximum.

• The likelihood-ratio test is used to test a hypothesis about the value of a parameter estimated using
the maximum likelihood, to obtain a confidence interval for that parameter, or to compare two nested
models.

• To estimate the uncertainty of an estimate in a model with several adjustable parameters, we can either
calculate the profile likelihood for this parameter or use the quadratic approximation.
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