Hierarchical Bayesian models

Introduction

Today’s course first covers Markov chain Monte-Carlo methods, a family of algorithms for applying Bayesian
inference to complex models. We will specifically talk about the Stan platform, which has some unique
advantages over other software due to its implementation of the Hamiltonian Monte-Carlo algorithm. We
will then present a protocol for the development of hierarchical Bayesian models.

Contents

e Markov chain Monte-Carlo methods
e Stan platform for Bayesian inference

e Steps for developing a hierarchical Bayesian model

Markov chain Monte-Carlo methods

In the previous class, we saw the application of Bayes’ theorem to estimate the posterior distribution of the
parameters 6 of a model according to the observations y.

_ p(y|®)p(6)

In this equation, p(0) is the prior probability distribution of 6 (representing their uncertainty before observing
the data), while p(y|6) is the probability of observations y conditional on a value of 8, that is, the likelihood
function.

With several parameters, 6 is a vector, so the resulting posterior distribution is the joint distribution of 8 as
a function of the data. It is important to consider this joint distribution, as the most likely values for one
parameter may depend on the value of the other parameters.

In the above equation, the denominator p(y) is the marginal probability of the data. Since it does not depend
on 6, this probability can be seen as a normalization constant necessary for the integral of the posterior
probability distribution to be equal to 1.

We have also seen that p(y) corresponds to the integral of the numerator p(y|0)p(6) for all possible values of 6.
Except in simple cases, we cannot exactly calculate this integral to obtain a mathematical formula of p(8|y).

To solve this problem, we will use Monte-Carlo methods. As we saw in the first class of the semester, these
are methods for approximating a distribution by drawing samples from this distribution.

It does not seem possible to draw samples from the distribution p(8|y) if we do not know p(y). However, since
p(y) does not depend on 6, it is possible to calculate the ratio of the posterior probabilities of two vectors 6:

p(O)ly) p(ylo))p(f2)

p(Owyly) p(yl0a))p(0a))

Note: Here, we use indices in parentheses to represent different 6 vectors, in order to avoid confusion with
the different elements of a single vector, e.g. if 6 is a vector of m parameters, (1) = (61(1),02(1), ---Om(1))-

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm makes it possible to generate a sample of the distribution p(8|y) from
these probability ratios. Here is a summary of how this method works.

1. First, we randomly choose a first vector of parameters 6.

2. Next, we choose a second vector (), which depends on ;) according to some transition probability.
For example, adding to each of the parameters in 6(;) an amount drawn from a normal distribution.

r(02)|y)

3. We compute the posterior probability ratio PO)

o If the ratio is greater than or equal to 1 (6(2) is more likely than 6;)), we accept 6(y).

o If the ratio is less than 1, we accept 6(3) with a probability equal to this ratio; otherwise, we stay
at the same point so (o) = 0(1).

Steps 2 and 3 are repeated for the desired number of iterations.

It has been shown that with enough iterations, the distribution of ;) can become as close as desired to the
distribution sought: p(f|y). This theoretical result in fact depends on certain conditions; however, we will not
discuss these details here, as we are concerned not with whether the algorithm eventually converges, but
whether it converges quickly enough to be useful in practice. This depends on the problem and it will be
necessary to determine the convergence empirically by inspecting the algorithm output, as we will see later.

Markov chains

In the Metropolis-Hastings algorithm, each vector 6(;,1) is a random vector which depends on ;. In
probability theory, this type of sequence is called a Markov chain. This algorithm is therefore the basis of
Markov chain Monte-Carlo methods (abbreviated MCMC).

To illustrate the progression of a Markov chain, take the example below which represents the joint distribution
of two parameters 6 and 6; the darker regions represent a higher probability density. Note that the two
distributions are correlated: the larger 6 is, the more likely it is that 65 is small and vice versa.

0.51

0.01

-1.01

-1.51

15 2.0 25 3.0 3.5
B4

In the graph below, the green and purple arrows represent two Markov chains initialized at different random
positions. Although the transitions are random, the probability of accepting a transition is greater when the
posterior probability density is higher, so the chains gradually approach the main part of the distribution.

0.51

0.01

-

-1.01 /’\.

-1.51

15 20 25 3.0 35
01

After this initial period, the two chains explore the distribution and the probability that each point (61, 6s) is
visited by a chain is proportional to its posterior probability density.

0.51

0.01

-1.01 /“‘

-1.51

15 2.0 25 3.0 3.5
01

Let’s now consider the sequence of values for one parameter 6 visited by three Markov chains, as presented in
the graph below (called a trace plot).

ltération

At the start, the chains must start from their respective initial points and approach the main part of the
distribution. This is called the “burn-in” or “warmup” period. The parameter values during that period are
not used for inference. After the dotted line, we see that the chains have converged and mixed. This is the
sampling period that will be used to approximate the posterior distribution of the parameter.

Verification of the convergence of the chains

As we saw above, the inspection of the trace plot can tell us if different Markov chains have converged, which
means that their values can be used to estimate the posterior distribution.

To assess the convergence more quantitatively, we can use the Gelman-Rubin statistic R. This statistic
represents the variance of a parameter between the chains relative to the variance of the parameter within
each chain. This statistic is conceptually similar to an ANOVA: if the chains explore the same distribution,
then the level of variation between values from the same chain is similar to the variation between values from
different chains.

At convergence, R must be around 1. There is no definitive threshold for this value, but most authors
agree that R should not exceed 1.1. However, R < 1.1 does not guarantee convergence towards the correct
distribution; we will see later other diagnostics aiming to confirm that the algorithm is fully exploring the
posterior distribution.

In the event of a convergence problem, we can extend the warmup period. If convergence is much too slow or
if each chain remains “caught” in a part of the distribution rather than mixing with the other chains, this
could indicate a difficulty in estimating the parameters of the model with the data provided. In this case, it
would be useful to reparametrize or modify the model.

Sampling efficiency

If the algorithm converges, we can quantify the efficiency with which the Markov chains approximate the
posterior distribution.

Let us consider a function f calculated from the parameters of the model. It can be the mean of the parameter,
a quantile, or any statistic of interest which depends on one or more parameters of the model. If we had a
sample of N independent random draws of the joint posterior distribution of the parameters, then the value
of f calculated from this sample would approach its value for the exact distribution, with an approximation
error (Monte-Carlo standard error, or MCSE) proportional to 1/v/N.

Note: One should not confuse the Monte-Carlo standard error with the standard deviation of the posterior
distribution of the parameter. The standard deviation of the posterior distribution (similar to the standard
error for a frequentist estimator) represents uncertainty about the value of the parameter and depends
(among other things) on the number of observations. The Monte-Carlo standard error is the numerical
approximation error of the algorithm. By increasing the number of iterations, we can estimate more precisely
all the properties of the posterior distribution, including its standard deviation, but we cannot reduce this
standard deviation without having more data. We had the same situation in the case of the bootstrap: we
could increase the number of bootstrap samples to reduce the numerical approximation error, but not the
uncertainty due to the limited data.

However, the Markov chain does not produce independent draws, since the value of f(; 1) is conditional on 0;.
In this case, the successive values of the chain are correlated, so N iterations are not equivalent to a sample
of N independent values.

Bayesian inference software calculates the Monte-Carlo standard error and the effective sample size, Ny,
which is the number of independent draws necessary to have the same precision as the N correlated iterations.
In general, N,y is less than the number of iterations, but this is not always the case, in particular for more
efficient algorithms like the Hamiltonian Monte-Carlo algorithm seen in the following section.

Stan platform for Bayesian inference

Stan (https://mec-stan.org) is both a language to specify statistical models (as we saw during the previous
lab) and a software implementing various inferential algorithms for those models. Released in 2015, it is

https://mc-stan.org

among the more recent Bayesian inference software.

Carpenter, B. et al. (2017) Stan: A Probabilistic Programming Language. Journal of Statistical
Software 76(1). 10.18637/jss.v076.i101. Models coded in Stan language are compiled in C ++ code
in order to obtain a good speed of execution.

While Stan is a standalone software, there are packages in R (rstan) and Python allowing to interface with
Stan. Also, there are several R packages that offer more options for using Stan:

e brms and rstanarm automatically translate models specified in R into the Stan language;
e bayesplot and shinystan produce visualizations of the results of the models, as we will see later;

e [oo implements a model comparison and multi-model prediction method based on the approximation of
the cross-validation error;

e tidybayes offers other viewing options, in particular for posterior distributions of parameters.

Hamiltonian Monte-Carlo method

The MCMC algorithm implemented by Stan is the Hamiltonian Monte-Carlo (HMC) method. One specific
feature of this method is that it evaluates not only the value of p(y|0)p(#) at each iteration, but also its
gradient, which is the equivalent of the “slope” of a surface in several dimensions. Thus, the algorithm knows
in which direction the posterior probability is increasing, which makes it possible to converge more quickly
towards the part of the distribution containing most of the probability.

In addition, each iteration of this algorithm is made up of several steps and follows a “curve” in the parameter
space which is guided by the shape of the probability distribution. This allows successive points in the chain
to be more spaced apart than in the case of traditional MCMC methods, which means that these points are
more independent and that the effective sample size N¢¢ is larger for a same number of iterations.

In addition to these performance advantages, the Hamiltonian algorithm offers unique diagnostics, such as
the presence of divergent transitions, which make it possible to check its validity.

The following article presents more details on the Hamiltonian Monte-Carlo method in an ecological modeling
context.

Monnahan, C.C., Thorson, J.T. et Branch, T.A. (2017) Faster estimation of Bayesian models in
ecology using Hamiltonian Monte Carlo. Methods in Ecology and Evolution 8: 339-348.

Diagnostics in Stan
Divergent transitions

The divergent transitions indicate that the algorithm has difficulty exploring a region of the posterior
probability distribution, generally due to an abrupt change in the form of this distribution. This is the most
serious diagnostic error, since even a small number of divergences compromise the validity of the results of
the algorithm.

One of the ways to eliminate divergent transitions is to force the algorithm to take smaller steps, by increasing
the adapt_delta parameter adjustable in Stan. However, in a case where the divergences persist, it may be
necessary to reparametrize the model.

Maximum tree depth

The Hamiltonian algorithm evaluates different possible trajectories (represented by a tree) to choose the
value of the parameters at the next iteration. When the maximum tree depth is reached, this means that

the algorithm has tried the maximum number of trajectories, but that a longer trajectory remains possible.
Unlike divergent transitions, this warning does not invalidate the results, but it can indicate a suboptimal
parameterization.

You can increase the maximum depth with the max_ treedepth argument, but this increases the time taken
for each iteration.

Energy (BFMI low)

As with the divergences, this warning indicates that the algorithm does not traverse the posterior distribution
efficiently. This problem can sometimes be resolved by extending the warmup period. However, if it occurs at
the same time as one of the previous ones, the formulation of the model should probably be reviewed.

Options for using Stan from R

To conclude this section, we will see different ways to use Stan from R. First, we can write a Stan program,
as we will see in the next lab. Here is the beginning of the Stan code for a simple model, where there are NV
observations of a response variable y and a predictor x.

data {
int N;
vector [N] y;
vector [N] x;

}

[...]

To estimate the parameters of this model from data present in a data frame df containing thex and y columns,
we must first create a list associating the data with each variable of the data block in the Stan program.

dat <- list(N = nrow(df), y = df$y, x = df$x)

Then, we call the stan_model function to compile the model, then sampling to estimate the posterior
distribution of the parameters from the data.

library(rstan)
mod <- stan_model("model.stan")
result <- sampling(mod, data = dat)

In the previous class, we briefly presented the brms package, which allows us to represent models with a
formula similar to the functions already seen in the course (1m,glm, lmer, etc.), then automatically translates
them into Stan language to estimate the parameters in a Bayesian framework. The brm function is used for
all types of models supported by the package (generalized linear models, mixed effect models, temporal and
spatial dependence, etc.)

library (brms)
res_brms <- brm(y ~ x, data = df)

The rstanarm package is an alternative to brms. Rather than using a single function, this package contains
functions specialized for each model type (e.g. stan_lm, stan_glm, stan_lmer).

library(rstanarm)
res_arm <- stan_lm(y ~ x, data = df)

This package has slightly fewer options than brms, but its main advantage is that the Stan programs used
are pre-compiled. The compilation time is generally only a few minutes for a new model, but this time saving
can be useful when it is necessary to evaluate successively many different models.

The two packages rstanarm and brms make it possible to estimate the parameters of frequently-used model
types without worrying about programming in the Stan language and specifically optimizing the formulation
of the model to facilitate efficient sampling. Their use is therefore recommended, except when a custom
model is required which must be coded in Stan.

Steps for developing a hierarchical Bayesian model

This part presents the steps of a suggested protocol for the development and validation of a hierarchical
Bayesian model.

The protocol is based on the article:

Betancourt, M. (2020) Towards A Principled Bayesian Workflow. https://betanalpha.github.io/a
ssets/case_studies/principled_ bayesian_workflow.html.

Michael Betancourt is one of Stan’s developers and his website contains several articles on the theory related
to hierarchical Bayesian models, as well as case studies on their application to different problems.

Here are the main steps to follow when developing a new hierarchical Bayesian model to represent a given
system.

1. Formulate the model.

2. Check the prior predictions.

3. Test the fit of the model to simulated data.

4. Fit the model to actual data and check the diagnostics.
5. Check the posterior predictions.

Note that before step 4, we check the internal consistency of the model, then in steps 4 and 5 we check if it
adequately represents the observed data.

Model formulation

First, we must describe the variables of the model and their mathematical relationships, as well as the
statistical distributions assigned to the response variables. It is particularly important to consider the
structure of the sampling or experimental design in order to specify the hierarchy of random effects.

It is also at this stage that we choose the prior distributions for the parameters.

Prior predictive checks

To check whether the prior distributions of the predictors generate realistic values of the observations, we
start by generating parameter vectors from their prior distribution, then we simulate a data set similar to
that observed from the model based on each vector of parameters. This simulation uses the actual values of
the predictors for each observation.

From the results of the simulations, we check whether the properties of the simulated observations correspond
to realistic values for the problem. At this stage, we do not directly compare the simulations to actual
observations, only to our prior knowledge of what constitutes a reasonable value of the response.

https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html

Fit of the model to simulated data

For this step, we fit the model to each dataset simulated in the previous step. These datasets contain the
actual values of the predictors, but the response is simulated using known parameters taken from the prior
distribution.

Next, we check the fitting diagnostics for each simulation, then we check the accuracy of the model inferences
by comparing the posterior distributions to the parameter values used for each simulation. Since the data
were obtained by simulation, we expect the inference to produce estimates compatible with the known values
of the parameters. Two tests are useful at this point:

e Calibration test: Are the posterior probability intervals correct?
e Sensitivity test: Does the data allow us to determine the value of the parameter?

Since Bayesian inference must be repeated several times, this part of the protocol is very costly in terms of
computation time. Thus, it is not necessary to perform it for each model, especially if it is a type of model
that is already well known.

Calibration by simulation

Suppose we have observations y simulated from the model with a parameter value 6§ drawn from the prior
distribution. By fitting the model to these y, we obtain a sample of the posterior distribution of 8, that is
0y for i from 1 to N iterations .

If the inference is correct, the rank of § among the 6; is distributed uniformly between 1 and N + 1. This
is equivalent to saying that if an interval contains a certain fraction (say 90%) of the posterior probability
of 0, the true value of the parameter is included in that invertal this same fraction of time. (This coverage
property is analogous to that of frequentist confidence intervals.) In particular, if 6 is more often at the
extreme ranks than expected, this would mean that the posterior distribution underestimates the uncertainty
on #. On the contrary, if 6 is always at the center, it would mean that its uncertainty is overestimated.

The calibration test therefore aims to verify that over a large number of simulations, the rank of the true
value of § among the 0;) is uniformly distributed.

Talts, S. et al. (2018) Validating Bayesian inference algorithms with simulation-based calibration.
arXiv:1804.06788.

Sensitivity

If the model is well calibrated, the sensitivity test aims to determine whether, based on the amount of data
available, it is possible to accurately estimate the value of each parameter.

The z-score is the standardized difference between the estimated posterior value and the real value of the
parameter.

Opost—0

Opost
In other words, this statistic gives the difference between the estimated value and the real value of the
parameter, in standard deviation units of the posterior distribution. This value should generally be near zero;
for example, if the posterior distribution of the parameter is normal, for 95% of simulations the value of this
score will be between -2 and 2.

The shrinkage represents the reduction of the variance compared to the prior distribution:

2
1 _ Jpost,
2

prior

In general, we expect the posterior variance to be smaller than that the prior variance. For example, if the
posterior variance is 10 times smaller than the prior variance, the contraction is 90%.

Note that this term does not have the same meaning here as that seen earlier in the context of mixed models,
where it designates the shrinkage of random effects towards the general mean.

Fit to real data

Once the internal consistency of the model has been verified, we can now fit the model to the actual data,
check the diagnoses (divergences, tree depth, energy), then refit the model if necessary by modifying the
parameters of the algorithm.

If no problem is detected, we can consult the summary of estimates and view the posterior distributions of
the parameters.

Posterior predictive checks

In this last step, we want to verify that the predictions obtained by simulating observations from the posterior
distribution of the parameters are sufficiently close to the observations.

As seen at the end of the last class, we can check if enough observations are within their prediction interval
according to the fitted model. Also, we can compare predictions and observations using summary statistics
describing important characteristics of the data set that are not directly fit by the model.

Detailed example: Bayesian GLMM with brms

For this example, we use the rikz dataset from the textbook by Zuur et al., Mized Effects Models and
Eztensions in Ecology with R. We used the same data in week 5 for generalized linear mixed models.

The rikz dataset contains measurements of benthic species richness for 45 sites on 9 beaches (Beach) in
the Netherlands, and two predictors: the vertical position of the site (NAP) and the beach exposure index
(Exposure). Since the latter only takes three different values (8, 10 and 11), we will treat it as a factor.

rikz <- read.csv("../donnees/rikz.csv")
Convert Beach and Exposure to factors (categorical variables)
rikz <- mutate(rikz, Beach = as.factor(Beach),
Exposure = as.factor(Exposure))
head(rikz)

Sample Richness Exposure NAP Beach

1 1 11 10 0.045 1
2 2 10 10 -1.036 1
3 3 13 10 -1.336 1
4 4 11 10 0.616 1
5 5 10 10 -0.684 1
6 6 8 8 1.190 2

Here are the packages we will need for this example.
library(brms)

library(dplyr)

library(tidyr)

library(ggplot2)

10

library(cowplot)
theme_set (theme_cowplot())

Model formulation

As we did in week 5, we model this data using Poisson regression, with a random effect of the beach on the
intercept. Here is the mathematical representation of this model, where we have chosen parameter names
that are close to those given by brms:

Richness ~ poisson(lambda)
log(lambda) = b_Intercept + r_Beach + b_NAP * NAP + b_ExposurelO * ExposurelO + b_Exposure * Exposurell
r_Beach ~ normal(0, sd_Beach)

o the species richness follows a Poisson distribution with mean lambda;

e log(lambda) is given by a linear function of the NAP and the exposure index, with a mean intercept
(b_Intercept) and a random effect for each beach around this mean (r_Beach);

e the beach random effects are normally distributed with a standard deviation sd_Beach.

The above formula is based on the default coding of factors in R, with Exposure = 8 as the reference
level. Exposurel0 and Exposurell take a value of 1 when the Exposure variable is 10 or 11, respectively;
thus, b_Exposurel0 represents the difference in log(lambda) between levels 8 and 10 and b_Exposurell
represents the difference between levels 8 and 11.

We still have to choose the prior distribution for each parameter. Suppose we know that the species richness
on this type of site can reach tens of species, but not hundreds. A normal (2, 1) distribution for the intercept
means that we give 95% probability to values between 0 and 4 on the logarithmic scale, or between 1 and 55
after taking the exponential.

exp(c(0, 4))

[1] 1.00000 54.59815

For the predictor coefficients, the normal (0, 1) distribution is a reasonable choice: we already assume that
the logarithm of the number of species varies on a scale of a few units, which is also the case for the only
numerical predictor (NAP).

summary (rikz$NAP)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.3360 -0.3750 0.1670 0.3477 1.1170 2.2550

Finally, we need to specify a distribution for the standard deviation of the random effects of the beach.
The normal (0, 1) distribution, which is actually half-normal because it is truncated to zero, may be too
permissive here. A standard deviation of 2 would mean that the species richness would vary by a factor of
€% ~ 7 from one beach to another. We therefore use normal(0, 0.5) instead.

Here is how to specify these prior distributions with brms:

rikz_prior <- c(set_prior("normal(0, 1)", class = "b"),
set_prior("normal(2, 1)", class = "Intercept"),
set_prior("normal(0, 0.5)", class = "sd"))

The class of coefficients “b” represents a distribution that applies to all fixed coefficients except the intercept
class. To specify the distribution of a single coefficient in a class, the argument coef must be specified in
addition to class. The “sd” class represents the prior distribution for standard deviations of random effects.
Since brms knows that standard deviations are always greater than zero, we do not need to specify the lower
bound with 1b here.

11

Prior predictive checks

We first call the function brm with the argument sample_prior = "only" to obtain a sample of the prior
distribution of the parameters of a model.

res_prior <- brm(Richness ~ NAP + Exposure + (1 | Beach), data = rikz,
family = poisson, sample_prior = "only",
chains = 1, iter = 400, prior = rikz_prior)

By default, brm estimates the posterior distribution with 4 chains and 2000 iterations per chain, with 50% of
these iterations constituting the warmup period. Here, we specify a single chain and 400 iterations, so there
are 200 warmup iterations and 200 for sampling.

The function posterior_samples usually returns an array of values taken from the posterior distribution of
the parameters, but here it is the prior distribution because of the argument sample_prior.

prior_params <- posterior_samples(res_prior)

str(prior_params)

'data.frame': 200 obs. of 15 variables:

$ b_Intercept :num 1.113 3.499 2.153 0.136 3.622 ...

$ b_NAP : num -0.0686 -0.6141 -1.234 -0.2929 0.4807 ...

§ b_Exposurell : num -0.441 -0.406 -0.473 0.321 -0.639 ...

$ b_Exposurell : num 0.265 -0.257 0.138 2.156 -1.629 ...

$ sd_Beach__Intercept : num 0.3018 0.0763 0.0478 0.3042 0.7093 ...

$ r_Beach[l,Intercept]: num 0.3419 -0.0968 -0.0536 0.0275 -0.0424 ...

§ r_Beach[2,Intercept]: num -0.32867 -0.00337 0.05592 -0.01466 0.04736 ...
§ r_Beach[3,Intercept]: num -0.1363 0.0619 0.024 0.1615 -0.7123 ...

$ r_Beach[4,Intercept]: num 0.6445 -0.1244 -0.0595 -0.3911 0.8905 ...

$ r_Beach[5,Intercept]: num -0.31044 0.00526 0.0078 0.23129 -0.6946 ...

$ r_Beach[6,Intercept]: num -0.1426 0.0228 0.0352 0.5641 0.0794 ...

$ r_Beach[7,Intercept]: num 0.0378 -0.0767 -0.0131 0.3138 -0.7143 ...

$ r_Beach[8,Intercept]: num -0.27338 -0.02351 0.00226 0.15147 -0.14758 ...
§ r_Beach[9,Intercept]: num -0.1703 -0.1018 -0.0316 -0.3655 1.0734 ...

$ 1p__ : num -18.3 -18.8 -18.2 -20 -18.2 ...

Each row represents one iteration of the sampling period. In this case, Stan is simply drawing values for each
parameter from their prior distribution. Parameters with names beginning with b represent the fixed effects,
sd_Beach__Intercept is the standard deviation of the random effects of the beach on the intercept, and
then parameters with names beginning with r are the random effects; these are drawn from the distribution
defined by sd_Beach__Intercept. The last parameter, 1p__, represents the log of the joint probability of
the parameters.

We add to this dataset a column identifying the simulation (from 1 to 200):

prior_params$sim_id <- as.character(1:200)

The posterior_predict function generates a simulation of the response variable according to the value of
the parameters at each iteration and the predictors of the dataset.

Despite the name, this function is closer to the simulate function for classical models in R, rather than
predict. As seen in the previous lab, posterior_epred provides the predictions of the mean response at
each iteration.

The result is a matrix with one row for each of the 200 iterations of the prior distribution and one column for
each of the 45 observations of the original dataset (in the same order as the 45 rows of the original dataset).

prior_pred <- posterior_predict(res_prior)
str(prior_pred)

12

int [1:200, 1:45] 1 19 6 0 24 6 98 5 26 75 ...
- attr(*, "dimnames")=List of 2

..$: NULL

..$: NULL

In order to visualize these predictions, we add a column to identify the simulation and we perform a pivot to
get 3 columns: sim_id, obs_id and Richness.

prior_df <- data.frame(prior_pred)
prior_df$sim_id <- 1:200
prior_df <- pivot_longer(prior_df, cols = -sim_id,
names_to = "obs_id", values_to = "Richness")
head (prior_df)

A tibble: 6 x 3
sim_id obs_id Richness

<int> <chr> <int>
1 1 X1 1
2 1 X2 0
3 1 X3 2
4 1 X4 5
5 1 X5 6
6 1 X6 7

summary (prior_df$Richness)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 2.00 8.00 25.09 20.00 3352.00

The maximum simulated value is very high (3458 species), which frequently occurs when the response follows
an exponential function of the predictors. However, the vast majority of simulated values are less than 100.

mean (prior_df$Richness < 100)

[1] 0.9593333

Here is a way to visualize the distribution of the species richness for each prior simulation of the model.
We create a probability density curve (with stat_density) for each simulation (group = sim_id), with a
transparency level alpha = 0.3 to see the superimposed curves. We apply a square root transformation to
the x axis to see more of the data (a log transformation is impossible because of the presence of zeros), then
we limit this axis to values between 0 and 200.

ggplot(prior_df, aes(x = Richness)) +
stat_density(aes(group = sim_id), position = "identity", geom = "line", alpha = 0.3) +
scale_x_sqrt(breaks = c(0, 1, 10, 25, 50, 75, 100)) +
coord_cartesian(xlim = c(0, 200))

13

0.6 1

0.2 1

0.0

Richness

Most simulations give a low probability to richness values > 100, consistent with the prior knowledge of the
system.

As mentioned above, step 3 of the full protocol (fitting the model to the simulated data) takes a lot of time,
so it is often omitted, especially for a “standard” model such as a GLMM. Nevertheless, I have included the
code to perform this step as a supplement at the end of these notes.

Fitting the model to observations

We are now ready to fit the model to the actual observations with brm. Here, we reduce the number of
Markov chains to 2 and specify the control parameter adapt_delpth = 0.99, because we had previously
observed that the default value (adapt_delta = 0.8) generates several divergences.

res_br <- brm(Richness ~ NAP + Exposure + (1 | Beach), data = rikz,
family = poisson, control = list(adapt_delta = 0.99),
chains = 2, prior = rikz_prior)

summary (res_br)

Family: poisson
Links: mu = log
Formula: Richness ~ NAP + Exposure + (1 | Beach)

Data: rikz (Number of observations: 45)

Samples: 2 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 2000

##

Group-Level Effects:

14

~Beach (Number of levels: 9)

#t Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.23 0.14 0.02 0.55 1.00 433 439
##

Population-Level Effects:

Estimate Est.Error 1-95J CI u-95J CI Rhat Bulk_ESS Tail_ ESS

Intercept 2.38 0.29 1.69 2.90 1.00 933 652

NAP -0.50 0.07 -0.65 -0.36 1.00 2032 1386

ExposurelO -0.47 0.33 -1.06 0.26 1.00 878 631

Exposurell -1.17 0.34 -1.76 -0.38 1.01 827 663

##

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The summary of the results indicates first the model formula, then the parameters of the algorithm (number
of chains and iterations, number of warmup iterations). The Group-Level Effects section shows the standard
deviation of random effects, while the Population-Level Effects section shows the fixed effects. Each estimate
shows the mean, standard deviation, and a 95% credibility interval for the posterior distribution, as well
as the Gelman-Rubin statistic (Rhat) and the effective Monte Carlo sample size (based on two measures,
Bulk_ESS and Tail_ESS).

Comparing these results with those of the classical GLMM, we obtain differences between the mean estimates,
but these differences are reasonable considering the margins of error of each parameter.

library(1lme4)
res_glmm <- glmer(Richness ~ NAP +Exposure + (1 | Beach), data = rikz, family = poisson)
summary (res_glmm)

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: poisson (log)

Formula: Richness ~ NAP + Exposure + (1 | Beach)

#i#t Data: rikz

#it

AIC BIC logLik deviance df.resid
210 219 -100 200 40
#i#

Scaled residuals:

#it Min 1Q Median 3Q Max

-1.8080 -0.4947 -0.2078 0.2789 3.9801

#i#

Random effects:

Groups Name Variance Std.Dev.

Beach (Intercept) 0.01138 0.1067
Number of obs: 45, groups: Beach, 9

##

Fixed effects:

#t Estimate Std. Error z value Pr(>|zl)

(Intercept) 2.52472 0.16720 15.100 < 2e-16 *x*x*

NAP -0.50781 0.07128 -7.125 1.04e-12 *xx*

Exposurel0 -0.59863 0.19615 -3.052 0.00227 *x*

Exposurell -1.33491 0.21817 -6.119 9.43e-10 *x**

———

Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

15

Correlation of Fixed Effects:
#it (Intr) NAP Exps10
NAP 0.078

ExposurelO -0.847 -0.027

Exposurell -0.766 -0.063 0.653

There are a few reasons why the estimates obtained by the Bayesian approach differ from those obtained by
maximum likelihood, in particular:

e the prior distribution can influence the inference if the number of observations is small;

e even in the case where the prior distribution has little influence and the posterior distribution takes the
same form as the likelihood function, the Bayesian estimate is the mean of the posterior distribution,
which is not necessarily equal to the point of maximum probability, especially if the distribution is
skewed.

The stanplot function allows the visualization of different model results, including the traceplot of the
Markov chains, a histogram of the posterior distributions, or a representation of the different coefficients with
their credibility intervals.

stanplot(res_br, type = "trace")

Warning: Method 'stanplot' is deprecated. Please use 'mcmc_plot' instead.

No divergences to plot.

b_Intercept b _NAP b_Exposurel0O
3.01

bt ol
204 it M!', “llf M' —06-““U"”L‘I“H}rl" M” Hl”‘ ul‘

I '{"'[|h'

|
_ it
15 I M it J
1.0 -0.8 - h
0 20040060080(1000 O 20040060080@.000 0 20040060080(1000 Chain
— 1
b_Exposurell sd_Beach__Intercep 2

0.8 1

1:“‘1\“" ”Wluur' Zj '“l” H\Il
Rl 2:2' “lt lt N wl‘

0 20040060080CL000 0 20040060080CLO00

stanplot(res_br, type = "hist")

Warning: Method 'stanplot' is deprecated. Please use 'mcmc_plot' instead.

16

“stat_bin()" using “bins = 30°. Pick better value with ~binwidth~.

b_Intercept b _NAP b_Exposurel0

1.0 15 2.0 25 3.0 -0.8 -0.6 -0.4

b_Exposurell sd_Beach__Intercept

-2 -1 0 0.00 0.25 0.50 0.75

stanplot(res_br, type = "intervals")

Warning: Method 'stanplot' is deprecated. Please use 'mcmc_plot' instead.

17

%

b_Intercept

b_NAP

Q

|

b Exposurel0

%

b_Exposurell

7

sd_Beach__Intercept

-2 -1 0 1 2 3

Note that by default, the intervals in bold lines contain 50% of the posterior probability while those in thin
lines contain 90% of this probability.

An interactive tool to visualize the results and diagnostics of the model can be launched with the
launch_shinystan function.

launch_shinystan(res_br)

Posterior predictive checks
As in the last course, we use pp_check with type = "intervals" to compare the observations to the model’s

prediction intervals. On average, we expect 50% of the observations to be in the bold intervals and 90% in
the lighter intervals.

pp_check(res_br, type = "intervals")

Using all posterior samples for ppc type 'intervals' by default.

18

30 -

[]
20 -
[]
° ®
Yrep
[)
[) [] o
10 4 ° °
[]
[) [)
[) [)
[) [) [) [)
[) [) o
[] [] [) [) [)
[X) (N) [) [) [) [)
[) o
[) [) [) [) o0
O - [) [) [)
0 10 20 30 40
X

For a Poisson regression, we can also check that the standard deviation of the observations and the number
of zeros obtained are comparable to the values predicted by the fitted model.

pp_check(res_br, type = "stat", stat = sd)

Using all posterior samples for ppc type 'stat' by default.

“stat_bin()" using “bins = 307 . Pick better value with “binwidth".

19

T =.x3
T(yrep)

| T()

3 4 5 6 7 8

pp_check(res_br, type = "stat", stat = function(x) sum(x == 0))

Using all posterior samples for ppc type 'stat' by default.
“stat_bin()" using “bins = 30°. Pick better value with “binwidth".

20

T =.x3
T(yrep)

| T()

Supplement: Fitting the model to simulated data

We had obtained above simulations of the response variable for each of the 200 values derived from the prior
distribution of our parameter vector. We now wish to fit the model to each of these simulations in order to
perform calibration and sensitivity tests.

The brms package includes a brm_multiple function that allows us to fit the same model to several datasets
contained in a list. So we create a list of 200 replicates of the original dataset with replicate (simplify =
FALSE is necessary to prevent R from trying to combine all 200 datasets into one), then we use a loop to
replace the response column of each dataset with one of the rows of the prior prediction matrix.

rikz_repl <- replicate(200, rikz, simplify = FALSE)

for (i in 1:200) {
rikz_repl[[i]]$Richness <- prior_pred[i,]
}

Then we call the brm_multiple function with our model and this list of datasets. Note that combine =
FALSE ensures that brm_multiple produces a list of 200 objects for the results of each model, rather than
combining them into a single object.

We did not specify the number of iterations per chain, so brms uses 2000 iterations by default, including 1000
in the warmup period. With two chains, the sample of the posterior distribution will therefore contain 2000
values of each parameter by simulation.

21

res_test <- brm_multiple(Richness ~ NAP + Exposure + (1 | Beach),
data = rikz_repl, family = poisson,
chains = 2, control = list(adapt_delta = 0.99),
prior = rikz_prior, combine = FALSE)

Fitting the 200 models takes some time, so in practice this part might require the use of a high-performance
computing cluster.

We will now check how many models contain divergent transitions or have reached the maximum tree depth.
The nuts_params function produces the diagnostic values for each iteration of a fitted model. Here, since we
have a list of 200 results, we use lapply to apply this function to each element in the list: diags therefore
contains a list of 200 data sets.

diags <- lapply(res_test, nuts_params)

We can combine these datasets by stacking them with the bind_rows function of dplyr. The .id argument
to this function creates a column (here sim_id) that identifies the original list item from which each row
comes. Since the elements in the list have no names, this id here is the number between 1 and 200.

diags <- bind_rows(diags, .id = "sim_id")
head(diags)

sim_id Iteration Parameter Value Chain
1 1 1 accept_stat__ 0.9996518 1
2 1 2 accept_stat__ 0.9945361 1
3 1 3 accept_stat__ 0.9878070 1
4 1 4 accept_stat__ 0.9948456 1
5 1 5 accept_stat__ 0.9973272 1
6 1 6 accept_stat__ 0.9981608 1

Instead of two columns indicating the parameter and its value, we would like one column per parameter, so
we need to pivot the data with pivot_wider.

diags <- pivot_wider(diags, names_from = Parameter, values_from = Value)
head(diags)

A tibble: 6 x 9
sim_id Iteration Chain accept_stat__ stepsize

treedepth__ n_leapfrog__

<chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 1 1 1 1.00 0.0746 5 63
2 1 2 1 0.995 0.0746 5 31
3 1 3 1 0.988 0.0746 5 31
4 1 4 1 0.995 0.0746 6 63
5 1 5 1 0.997 0.0746 6 63
6 1 6 1 0.998 0.0746 6 63
... with 2 more variables: divergent__ <dbl>, energy__ <dbl>

Each row indicates the number of the simulation, the chain and the iteration in that chain, as well as the
values of six parameters of the algorithm. We are mainly interested in divergent__, which indicates whether
the transition was divergent (1) or not (0), and then in the treedepth__. With summarize, we count the
number of divergent transitions per simulation and the number of iterations having reached the maximum
tree depth (which is 10 by default). We also attach to this result the prior_params table containing the
parameters of each simulation in order to check if some parameter values are associated with the problems
identified by the diagnostics.

diags <- group_by(diags, sim_id) %>%
summarize(div = sum(divergent__), maxtree = sum(treedepth__ == 10)) %>%
inner_join(prior_params)

22

~summarise()” ungrouping output (override with ~.groups™ argument)
Joining, by = "sim_id"

Since these are not our real data, but simulations, we do not try to eliminate all problematic diagnoses, but
rather to see generally if estimation is difficult for certain ranges of values of the prior parameter distributions.

When inspecting this dataset, we note that 2 simulations contain 1 or 2 divergent transitions (respectively),
while about 10 simulations have sometimes reached the maximum tree depth. Simulations where many
iterations reach the maximum depth seem to be characterized by a high intercept or standard deviation of
the random effects, but otherwise there is no particular pattern to these results.

filter(diags, maxtree > 0 | div > 0) %>%
arrange (desc(div), desc(maxtree)) %>’
select(div, maxtree, b_Intercept, sd_Beach__Intercept)

A tibble: 13 x 4

div maxtree b_Intercept sd_Beach__Intercept
<dbl> <int> <dbl> <dbl>
1 2 0 2.98 0.0807
2 1 0 2.90 0.0831
3 0 459 4.73 0.884
##t 4 0 305 2.37 1.20
5 0 43 1.50 0.656
6 0 43 2.48 0.851
#it 7 0 7 1.97 1.37
8 0 7 2.85 0.635
9 0 4 1.36 0.859
10 0 3 2.37 1.20
11 0 2 3.13 0.730
12 0 2 0.869 0.515
13 0 2 2.86 1.02

Calibration test

For this test, we want to check whether the position of the true value of the parameter used for a simulation is
uniformly distributed among the values obtained for the posterior distribution estimated from this simulation.
For each result in our list, we can extract these posterior distributions with posterior_samples, which
produces a data frame of 2000 iterations x 15 parameters (14 parameters plus the log of the joint probability).

test_params <- lapply(res_test, posterior_samples)

However, the calibration test is based on an independent sample, so we subsample the results by taking one
value every 5 iterations, for a total of 399 values between iterations 5 and 1995. As before, we combine the
results of the 200 simulations with bind_rows by adding a column identifying the original simulation.

test_params <- lapply(res_test, function(x) posterior_samples(x) [seq(5, 1995, 5),])
test_params <- bind_rows(test_params, .id = "sim_id")

We use bind_rows to combine these posterior distributions with the values of the parameters from the prior
distribution that were used for the simulations, contained in the prior_params table. With id = "type",
we create a column which indicates whether it is the true value of the parameter (prior) or a value from the
posterior distribution (posterior). Finally, we apply a pivot to obtain 4 columns: the type of value, the
simulation number, the parameter and its value.

test_params <- bind_rows(prior = prior_params, posterior = test_params, .id = "type")
test_params <- pivot_longer(test_params, cols = -c(sim_id, type),

23

names_to = "param", values_to = "value")
head(test_params)

A tibble: 6 x 4

type sim_id param value
<chr> <chr> <chr> <dbl>
1 prior 1 b_Intercept 1.11

2 prior 1 b_NAP -0.0686
3 prior 1 b_Exposurel0 -0.441

4 prior 1 b_Exposurell 0.265
5 prior 1 sd_Beach__Intercept 0.302
6 prior 1 r_Beach[1,Intercept] 0.342

For each simulation and each parameter, test_params contains 400 values: the prior value of the parameter
that was used to simulate the data, then 399 values of the posterior distribution.

We still have to group the values by simulation and parameter, determine the rank of the 400 values (with
mutate), then keep only the ranks of the original values of the parameters (type == "prior"), which should
be uniformly distributed between 1 and 400 if the model is well calibrated.

Note: We eliminate the 1p__ column because log-probability is not a parameter of the model and is certainly
not comparable between the prior and posterior distributions.

calib <- group_by(test_params, sim_id, param) %>%
mutate(rank = rank(value)) %>%
filter(type == "prior", param != "lp__") %>%
ungroup ()

head(calib)

A tibble: 6 x 5

type sim_id param value rank
<chr> <chr> <chr> <dbl> <dbl>
1 prior 1 b_Intercept 1.11 332
2 prior 1 b_NAP -0.0686 145
3 prior 1 b_Exposurel0 -0.441 64
4 prior 1 b_Exposurell 0.265 42
5 prior 1 sd_Beach__Intercept 0.302 183
6 prior 1 r_Beach[1,Intercept] 0.342 366

To test the uniformity of the ranks for each parameter, we group the ranks into 10 classes with a histogram:
1 to 40, 41 to 80, etc. (It is important to specify the limits of the classes manually with breaks.) In theory,
the number of observations per class is given by a binomial distribution Bin(N = 200, p = 0.1), with a mean
of 20 (dotted line) and for which 99% of the probability is in the grey zone.

ggplot(calib, aes(x = rank)) +
geom_rect(ymin = gbinom(0.005, 200, 0.1), ymax = gbinom(0.995, 200, 0.1),
xmin = -40, xmax = 440, color = "white", fill = "grey80")
geom_hline(yintercept = 20, linetype = "dashed") +
geom_histogram(breaks = seq(0.5, 400.5, 40), fill = "orange", color = "white") +
facet_wrap(~ param)

+

24

b_Exposurel0O b_Exposurell b_Intercept b_NAP

20 -
101

301
20 1
10 1

count

30

20+ -F--l g o S I s —-- -

101

_Beach[9,Intercept d_Beach__Intercej 0 1002003004000 100200300400
30

10 1

0 1002003004000 100 200 300 400
rank

The distribution seems uniform and out of 140 bars (14 parameters x 10 classes), only 2 or 3 are out of the
99% range.

Sensitivity test

Let us now check whether 45 observations are sufficient to produce accurates estimates of the parameters for
each simulation.

The posterior_summary function of brms produces the summary of the posterior distributions of each
parameter, including the mean Estimate and the standard deviation Error.

posterior_summary(res_test[[1]])

i Estimate Est.Error Q2.5 Q97.5
b_Intercept 0.73804309 0.3812837 -0.01103903 1.5237741
b_NAP -0.03361925 0.0889227 -0.20693122 0.1288139
b_ExposurelO 0.01350677 0.4361814 -0.85850562 0.8661791
b_Exposurell 0.74411153 0.4199943 -0.14942175 1.5425583
sd_Beach__Intercept 0.33599318 0.1520600 0.09363625 0.6933657
r_Beach[1,Intercept] -0.01540107 0.2678292 -0.57347713 0.5171688
r_Beach[2,Intercept] -0.09866021 0.3071263 -0.80956364 0.4577313
r_Beach[3,Intercept] -0.27225569 0.2568916 -0.81579188 0.1746308
r_Beach[4,Intercept] 0.40803088 0.2527743 -0.01824350 0.9602471
r_Beach[5,Intercept] 0.09984275 0.2611922 -0.41250694 0.6686724
r_Beach[6,Intercept] -0.12874140 0.2371614 -0.62286951 0.3433624
r_Beach[7,Intercept] 0.03781016 0.2324461 -0.39633465 0.5317407
r_Beach[8,Intercept] 0.05143366 0.2660621 -0.47575466 0.6039337

25

r_Beach[9,Intercept] -0.18864904 0.2779928 -0.80830224 0.2940953
1p__ -105.25568957 3.1047764 -112.14681150 -100.1294588

The format of this result is a matrix where the row names indicate the parameter. We create a function that
converts this result into a data frame, adds the row names as a column and renames this column param.
Then we can apply this function to each simulation and combine the results with bind_rows (you can ignore
the warnings that the add_rownames function is outdated).

get_post_sum <- function(x) {
posterior_summary(x) %>%
as.data.frame() %>%
add_rownames () %>%
rename (param = rowname)

}

post_sum <- bind_rows(lapply(res_test, get_post_sum), .id = "sim_id")
head (post_sum)

A tibble: 6 x 6

#it sim_id param Estimate Est.Error Q2.5 Q97.5
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 b_Intercept 0.738 0.381 -0.0110 1.52
2 1 b_NAP -0.0336 0.0889 -0.207 0.129
3 1 b_Exposurel0 0.0135 0.436 -0.859 0.866
4 1 b_Exposurell 0.744 0.420 -0.149 1.54
5 1 sd_Beach__Intercept 0.336 0.152 0.0936 0.693
6 1 r_Beach[1,Intercept] -0.0154 0.268 -0.573 0.517

We still need to add to this data frame the real values of the parameters used to simulate the data. To do
this, we pivot the prior_params dataset, then we join the two datasets.
prior_params <- pivot_longer(prior_params, cols = -sim_id,
names_to = "param", values_to = "true_val")
head (prior_params)

A tibble: 6 x 3

sim_id param true_val
<chr> <chr> <dbl>
11 b_Intercept 1.11

2 1 b_NAP -0.0686
3 1 b_Exposurel0 -0.441

#t 4 1 b_Exposurell 0.265
5 1 sd_Beach__Intercept 0.302
6 1 r_Beach[1,Intercept] 0.342

post_sum <- inner_join(post_sum, prior_params)

Joining, by = c("sim_id", "param")

head (post_sum)

A tibble: 6 x 7

sim_id param Estimate Est.Error Q2.5 Q97.5 true_val
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#it 11 b_Intercept 0.738 0.381 -0.0110 1.52 1.11
#it 2 1 b_NAP -0.0336 0.0889 -0.207 0.129 -0.0686
3 1 b_Exposurel0 0.0135 0.436 -0.859 0.866 -0.441
4 1 b_Exposurell 0.744 0.420 -0.149 1.54 0.265

26

51 sd_Beach__Intercept 0.336 0.152 0.0936 0.693 0.302
6 1 r_Beach[1,Intercept] -0.0154 0.268 -0.573 0.517 0.342

Finally, we calculate the z score for each estimate, i.e. the difference between the mean and the true value
of the parameter, divided by the standard deviation; then the shrinkage factor, i.e. 1 - the ratio between
the posterior and prior variances of the parameters (the prior variance is 1 for fixed effects and 0.09 for
sd_Beach__Intercept, the latter calculated from the truncated normal distribution).

post_sum <- filter(post_sum, param != "lp__") %>%
mutate(zscore = (Estimate - true_val) / Est.Error,
prior_var = ifelse(param == "sd_Beach__Intercept", 0.09, 1),

contr = 1 - Est.Error~2/prior_var)

The following graph shows the distribution of z scores for each parameter. These are centered on 0 and most
estimates are within two standard deviations of the true value of the parameter (-2 < z < $2), showing
that the standard deviation of the posterior distribution does represent the uncertainty in the value of each
parameter.

ggplot(post_sum, aes(x = zscore)) +
geom_density() +
facet_wrap(~ param)

b_Exposurel0O b_Exposurell b_Intercept b_NAP

_Beach[1,Intercept _Beach[2,Intercept _Beach[3,Intercep! _Beach[4,Intercepi

AN ANYA A

_Beach[5,Intercept _Beach[6,Intercept _Beach[7,Intercepl _Beach[8,Intercepi

A ANANY A

25 OO 25 50 25 00 25 50

densit

_Beach[9,Intercept d_Beach__Intercej

0.4 -

QZ-_,///\\\~__

0.0

—25 OO 25 50 25 OO 25 50
zscore

Then we look at the shrinkage factor as a function of the true value of each parameter. We are not interested
in the random effects of each beach for this comparison, since their prior standard deviation depends on
sd_Beach__Intercept.

post_sum2 <- filter(post_sum,
param %in% c("b_Intercept", "b_NAP", "b_ExposurelO",
"b_Exposurell", "sd_Beach__Intercept"))

27

ggplot(post_sum2, aes(x = true_val, y = contr)) +
geom_point () +
facet_wrap(~ param, scales = "free_x")

b_Exposurel0 b_Exposurell b_Intercept
2 .

..‘
° 'Q.’“:O.‘o o®

L

2 0 2 3-2-10 1 2 3 0 2 4

contr

b _NAP sd_Beach__Intercept

2 10 1 2 00 05 10 15
true_val

Except for b_NAP, we notice that the contraction factor is often low. For example, a factor of 0.5 means
that the data only halves the uncertainty with respect to the prior distribution. According to the graph
for sd_Beach__Intercept, the higher the standard deviation of random effects, the less accurately we can
estimate it. To check if this is the case for the other parameters, we add another column representing the
true value of sd_Beach__Intercept for each simulation.

sd_true <- filter(post_sum, param == '"sd_Beach__Intercept") %>%
select(sim_id, sd_true = true_val)
post_sum <- inner_join(post_sum, sd_true)

Joining, by = "sim_id"

post_sum2 <- filter(post_sum,
param %in’% c("b_Intercept", "b_NAP", "b_ExposurelO",
"b_Exposurell", "sd_Beach__Intercept"))
ggplot(post_sum2, aes(x = sd_true, y = contr)) +
geom_point () +
facet_wrap(~ param, scales = "free_x")

28

b_Exposurel0 b_Exposurell b_Intercept

1.0
Q'a- :
0.8 - .‘.o s‘
o é..
° °
0.6 1 . *
° ° L] {. '... o
° °
0.4 .
°

E 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
o
o b_NAP sd_Beach__Intercept

1.0

0.8 1

0.6 1

0.4 1 ¢

00 05 10 1500 05 10 15
sd_true
Indeed, we find that the greater the variance between beaches, the less precise our estimates are.

29

	Introduction
	Contents
	Markov chain Monte-Carlo methods
	Metropolis-Hastings algorithm
	Markov chains
	Verification of the convergence of the chains
	Sampling efficiency

	Stan platform for Bayesian inference
	Hamiltonian Monte-Carlo method
	Diagnostics in Stan
	Divergent transitions
	Maximum tree depth
	Energy (BFMI low)

	Options for using Stan from R

	Steps for developing a hierarchical Bayesian model
	Model formulation
	Prior predictive checks
	Fit of the model to simulated data
	Calibration by simulation
	Sensitivity

	Fit to real data
	Posterior predictive checks

	Detailed example: Bayesian GLMM with brms
	Model formulation
	Prior predictive checks
	Fitting the model to observations
	Posterior predictive checks

	Supplement: Fitting the model to simulated data
	Calibration test
	Sensitivity test

