Distance-dependent recruitment for tree species at Barro Colorado Island (Panama)

Philippe Marchand¹, Liza S. Comita², S. Joseph Wright³, Richard Condit³, Stephen P. Hubbell³, and Noelle G. Beckman⁴

¹ Université du Québec en Abitibi-Témiscamingue, ² Yale University, ³ Smithsonian Tropical Research Institute, ⁴ Utah State University

Outline

- Background and theory
- Research objectives
- Barro Colorado Island (BCI) survey data
- Fitting empirical dispersal kernels
- Results and discussion

Photo: Christian Ziegler

Background and theory

Spatial distribution and coexistence of plant species shaped during early life history stages: seed dispersal and germination, seedling survival.

Janzen-Connell hypothesis

- Seed density greatest near parent,
- but so is mortality, due to concentration of specialist herbivores;
- therefore, seedling establishment peaks at distance from parent.

Other mechanisms (root mutualisms, satiation of herbivores) posited to increase survival near parent tree.

Background and theory

Distance-dependent seed dispersal and survivorship determine the seedlings' *effective dispersal kernel*.

Nathan and Casagrandi (2004), based on McCanny (1985)

Background and theory

- Comita et al. (2014) meta-analysis of experimental studies shows evidence of distance- and density-dependent mortality for a wide range of plant communities, though the effects are stronger at the seedling, rather than seed, stage.
- Distance-dependent mortality may or may not lead to a seedling density peak away from parent.
- Few attempts to directly estimate the shape of the seedling effective dispersal kernel from field data.

Objective of this study

Compare the empirical seed dispersal kernel and effective dispersal kernel for common tree species in the 50-ha forest census plot of Barro Colorado Island (BCI) in Panama.

 27 species included (minimum of 100 seeds and 50 seedlings in data)

Photo: Christian Ziegler

Seed and seedling surveys at BCI

0.5 m² traps for annual seedfall surveys (since 1987)

50-ha plot: All trees >1cm DBH censused every 5 years

Seed and seedling surveys at BCI

0.5 m² traps for annual seedfall surveys (since 1987)

1 m² quadrats for new recruits surveys (since 1995)

50-ha plot: All trees >1cm DBH censused every 5 years

Based on Muller-Landau et al. (2008) "Interspecific variation in primary seed dispersal in a tropical forest"

$$\widehat{S_{jy}} = a \sum_{i} Q(b_{iy})F(r_{ij})$$

Expected seeds by
trap (j) and year (y)

Based on Muller-Landau et al. (2008) "Interspecific variation in primary seed dispersal in a tropical forest"

Based on Muller-Landau et al. (2008) "Interspecific variation in primary seed dispersal in a tropical forest"

Based on Muller-Landau et al. (2008) "Interspecific variation in primary seed dispersal in a tropical forest"

$$\widehat{S_{jy}} = a \sum_{i} Q(b_{iy}) F(r_{ij})$$

Seed production is proportional to basal area, variation of proportionality constant across years (random effect) modelled by lognormal distribution.

$$Q(b_{iy}) = e^{\beta_y} b_{iy}$$
$$\beta_y \sim N(\mu_\beta, \sigma_\beta)$$

Five candidate dispersal kernel functions

2D *t*

Exponential power

Inverse power

Weibull

Log-normal

Edge effects

Two candidate distributions for observed counts relative to expected:

- Poisson: Variance = Mean
- Negative binomial: Variance = Mean + c Mean²
 (c measures degree of overdispersion in counts i.e. seed clumping)

Estimation method

- Hierarchical Bayesian models: 3 to 5 parameters
 - Mean and standard deviation of annual seed production
 - Dispersal kernel parameters (1 to 2)
 - Clumping parameter (if negative binomial)
- Output: samples from joint posterior parameter distribution for each of the 9 candidate models by species.
- Use posterior parameter distributions to obtain predictive distributions for seed density at different distances (predicted kernel).
- Weighted multi-model predictive kernel obtained by model stacking (Yao et al. 2018).

Similar kernels (6 species), e.g. *Beilschmiedia tovarensis*

Hubbell pattern (18 species), e.g. *Brosimum alicastrum*

Janzen-Connell pattern (3 species), e.g. *Palicourea guianensis*

Discussion

• What explains interspecific variation in recruitment patterns?

Discussion

- What explains interspecific variation in recruitment patterns?
- How to include rare species in analysis?

Discussion

- What explains interspecific variation in recruitment patterns?
- How to include rare species in analysis?
- Timing of distance- and density-dependent mortality; compare these results to point process analysis of mortality during seedling stage (Murphy et al. 2017).

Thank you for listening!

Questions?

philippe.marchand@uqat.ca

@philmrchnd

Photo: Christian Ziegler

